IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v55y2007i2p234-251.html
   My bibliography  Save this article

A Framework Using Two-Factor Price Lattices for Generation Asset Valuation

Author

Listed:
  • Chung-Li Tseng

    (Department of Engineering Management and Systems Engineering, University of Missouri--Rolla, Rolla, Missouri 65409)

  • Kyle Y. Lin

    (Operations Research Department, Naval Postgraduate School, Monterey, California 93943)

Abstract

In this paper, we use a real-options framework to value a power plant. The real option to commit or decommit a generating unit may be exercised on an hourly basis to maximize expected profit while subject to intertemporal operational constraints. The option-exercising process is modeled as a multistage stochastic problem. We develop a framework for generating discrete-time price lattices for two correlated Ito processes for electricity and fuel prices. We show that the proposed framework exceeds existing approaches in both lattice feasibility and computational efficiency. We prove that this framework guarantees existence of branching probabilities at all nodes and all stages of the lattice if the correlation between the two Ito processes is no greater than 4/(sqrt)35 (approx) 0.676. With price evolution represented by a lattice, the valuation problem is solved using stochastic dynamic programming. We show how the obtained power plant value converges to the true expected value by refining the price lattice. Sensitivity analysis for the power plant value to changes of price parameters is also presented.

Suggested Citation

  • Chung-Li Tseng & Kyle Y. Lin, 2007. "A Framework Using Two-Factor Price Lattices for Generation Asset Valuation," Operations Research, INFORMS, vol. 55(2), pages 234-251, April.
  • Handle: RePEc:inm:oropre:v:55:y:2007:i:2:p:234-251
    DOI: 10.1287/opre.1060.0355
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1060.0355
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1060.0355?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hull, John & White, Alan, 1993. "One-Factor Interest-Rate Models and the Valuation of Interest-Rate Derivative Securities," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(2), pages 235-254, June.
    2. Margrabe, William, 1978. "The Value of an Option to Exchange One Asset for Another," Journal of Finance, American Finance Association, vol. 33(1), pages 177-186, March.
    3. Donald L. Keefer, 1994. "Certainty Equivalents for Three-Point Discrete-Distribution Approximations," Management Science, INFORMS, vol. 40(6), pages 760-773, June.
    4. Chung-Li Tseng & Graydon Barz, 2002. "Short-Term Generation Asset Valuation: A Real Options Approach," Operations Research, INFORMS, vol. 50(2), pages 297-310, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guoming Lai & Mulan X. Wang & Sunder Kekre & Alan Scheller-Wolf & Nicola Secomandi, 2011. "Valuation of Storage at a Liquefied Natural Gas Terminal," Operations Research, INFORMS, vol. 59(3), pages 602-616, June.
    2. Anna Maria Gambaro & Nicola Secomandi, 2021. "A Discussion of Non‐Gaussian Price Processes for Energy and Commodity Operations," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 47-67, January.
    3. J. Muñoz & J. Contreras & J. Caamaño & P. Correia, 2011. "A decision-making tool for project investments based on real options: the case of wind power generation," Annals of Operations Research, Springer, vol. 186(1), pages 465-490, June.
    4. Simshauser, Paul, 2020. "Merchant renewables and the valuation of peaking plant in energy-only markets," Energy Economics, Elsevier, vol. 91(C).
    5. Chung-Li Tseng & Tong Zhao & Chung Fu, 2009. "Contingency estimation using a real options approach," Construction Management and Economics, Taylor & Francis Journals, vol. 27(11), pages 1073-1087.
    6. Tseng, Chung-Li & Zhu, Wei & Dmitriev, Alexandre, 2009. "Variable capacity utilization, ambient temperature shocks and generation asset valuation," Energy Economics, Elsevier, vol. 31(6), pages 888-896, November.
    7. Chung-Li Tseng & Daniel Wei-Chung Miao & San-Lin Chung & Pai-Ta Shih, 2021. "How Much Do Negative Probabilities Matter in Option Pricing?: A Case of a Lattice-Based Approach for Stochastic Volatility Models," JRFM, MDPI, vol. 14(6), pages 1-32, May.
    8. Seiji Harikae & James S. Dyer & Tianyang Wang, 2021. "Valuing Real Options in the Volatile Real World," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 171-189, January.
    9. Onur Boyabatlı & Javad Nasiry & Yangfang (Helen) Zhou, 2019. "Crop Planning in Sustainable Agriculture: Dynamic Farmland Allocation in the Presence of Crop Rotation Benefits," Management Science, INFORMS, vol. 67(5), pages 2060-2076, May.
    10. Trigeorgis, Lenos & Tsekrekos, Andrianos E., 2018. "Real Options in Operations Research: A Review," European Journal of Operational Research, Elsevier, vol. 270(1), pages 1-24.
    11. Warren J. Hahn & James S. Dyer, 2011. "A Discrete Time Approach for Modeling Two-Factor Mean-Reverting Stochastic Processes," Decision Analysis, INFORMS, vol. 8(3), pages 220-232, September.
    12. Secomandi, Nicola & Seppi, Duane J., 2014. "Real Options and Merchant Operations of Energy and Other Commodities," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 6(3-4), pages 161-331, July.
    13. Nadarajah, Selvaprabu & Secomandi, Nicola, 2023. "A review of the operations literature on real options in energy," European Journal of Operational Research, Elsevier, vol. 309(2), pages 469-487.
    14. Hörnlein, Lena, 2019. "The value of gas-fired power plants in markets with high shares of renewable energy," Energy Economics, Elsevier, vol. 81(C), pages 1078-1098.
    15. Li, Yihua & Tseng, Chung-Li & Hu, Guiping, 2015. "Is now a good time for Iowa to invest in cellulosic biofuels? A real options approach considering construction lead times," International Journal of Production Economics, Elsevier, vol. 167(C), pages 97-107.
    16. Fleten, Stein-Erik & Näsäkkälä, Erkka, 2003. "Gas fired power plants: Investment timing, operating flexibility and abandonment," MPRA Paper 217, University Library of Munich, Germany, revised Jun 2006.
    17. Bastian-Pinto, Carlos & Brando, Luiz & Hahn, Warren J., 2009. "Flexibility as a source of value in the production of alternative fuels: The ethanol case," Energy Economics, Elsevier, vol. 31(3), pages 411-422, May.
    18. Elias, R.S. & Wahab, M.I.M. & Fang, L., 2016. "The spark spread and clean spark spread option based valuation of a power plant with multiple turbines," Energy Economics, Elsevier, vol. 59(C), pages 314-327.
    19. Briest, Gordon & Lauven, Lars-Peter & Kupfer, Stefan & Lukas, Elmar, 2022. "Leaving well-worn paths: Reversal of the investment-uncertainty relationship and flexible biogas plant operation," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1162-1176.
    20. Contreras, Javier & Rodríguez, Yeny E., 2014. "GARCH-based put option valuation to maximize benefit of wind investors," Applied Energy, Elsevier, vol. 136(C), pages 259-268.
    21. Fleten, Stein-Erik & Näsäkkälä, Erkka, 2010. "Gas-fired power plants: Investment timing, operating flexibility and CO2 capture," Energy Economics, Elsevier, vol. 32(4), pages 805-816, July.
    22. Glensk, Barbara & Madlener, Reinhard, 2019. "The value of enhanced flexibility of gas-fired power plants: A real options analysis," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    23. Sripad K. Devalkar & Ravi Anupindi & Amitabh Sinha, 2011. "Integrated Optimization of Procurement, Processing, and Trade of Commodities," Operations Research, INFORMS, vol. 59(6), pages 1369-1381, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hlouskova, Jaroslava & Kossmeier, Stephan & Obersteiner, Michael & Schnabl, Alexander, 2005. "Real options and the value of generation capacity in the German electricity market," Review of Financial Economics, Elsevier, vol. 14(3-4), pages 297-310.
    2. Chung-Li Tseng & Tong Zhao & Chung Fu, 2009. "Contingency estimation using a real options approach," Construction Management and Economics, Taylor & Francis Journals, vol. 27(11), pages 1073-1087.
    3. Simshauser, Paul, 2020. "Merchant renewables and the valuation of peaking plant in energy-only markets," Energy Economics, Elsevier, vol. 91(C).
    4. Shane Miller, 2007. "Pricing of Contingent Claims Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2007.
    5. Bing-Huei Lin & Ren-Raw Chen & Jian-Hsin Chou, 1999. "Pricing and quality option in Japanese government bond futures," Applied Financial Economics, Taylor & Francis Journals, vol. 9(1), pages 51-65.
    6. Ravi Kashyap, 2016. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Papers 1609.01274, arXiv.org, revised Mar 2022.
    7. Shane Miller, 2007. "Pricing of Contingent Claims Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 25, July-Dece.
    8. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, December.
    9. Ravi Kashyap, 2022. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Annals of Operations Research, Springer, vol. 315(2), pages 1175-1215, August.
    10. John Crosby, 2008. "Pricing a class of exotic commodity options in a multi-factor jump-diffusion model," Quantitative Finance, Taylor & Francis Journals, vol. 8(5), pages 471-483.
    11. Anna Maria Gambaro & Nicola Secomandi, 2021. "A Discussion of Non‐Gaussian Price Processes for Energy and Commodity Operations," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 47-67, January.
    12. Unterschultz, James R., 2000. "New Instruments For Co-Ordination And Risk Sharing Within The Canadian Beef Industry," Project Report Series 24046, University of Alberta, Department of Resource Economics and Environmental Sociology.
    13. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2003. "Are convertible bonds underpriced? An analysis of the French market," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 635-653, April.
    14. Jérôme Detemple, 1999. "American Options: Symmetry Properties," CIRANO Working Papers 99s-45, CIRANO.
    15. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742, Decembrie.
    16. Giovanni Villani, 2008. "R&D Cooperation in Real Option Game Analysis," Quaderni DSEMS 19-2008, Dipartimento di Scienze Economiche, Matematiche e Statistiche, Universita' di Foggia.
    17. Takami, Marcelo Yoshio & Tabak, Benjamin Miranda, 2008. "Interest rate option pricing and volatility forecasting: An application to Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 755-763.
    18. Alnoor Bhimani & Kjell Hausken & Mthuli Ncube, 2010. "Agent takeover risk of principal in outsourcing relationships," Global Business and Economics Review, Inderscience Enterprises Ltd, vol. 12(4), pages 329-340.
    19. Daniel Oda, 2013. "Introducing Liquidity Risk in the Contingent-Claim Analysis for the Banks," Working Papers Central Bank of Chile 681, Central Bank of Chile.
    20. Jamshidian, Farshid, 2008. "Numeraire Invariance and application to Option Pricing and Hedging," MPRA Paper 7167, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:55:y:2007:i:2:p:234-251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.