IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v31y2009i1p25-37.html
   My bibliography  Save this article

Investment and upgrade in distributed generation under uncertainty

Author

Listed:
  • Siddiqui, Afzal S.
  • Maribu, Karl

Abstract

The ongoing deregulation of electricity industries worldwide is providing incentives for microgrids to use small-scale distributed generation (DG) and combined heat and power (CHP) applications via heat exchangers (HXs) to meet local energy loads. Although the electric-only efficiency of DG is lower than that of central-station production, relatively high tariff rates and the potential for CHP applications increase the attraction of on-site generation. Nevertheless, a microgrid contemplating the installation of gas-fired DG has to be aware of the uncertainty in the natural gas price. Treatment of uncertainty via real options increases the value of the investment opportunity, which then delays the adoption decision as the opportunity cost of exercising the investment option increases as well. In this paper, we take the perspective of a microgrid that can proceed in a sequential manner with DG capacity and HX investment in order to reduce its exposure to risk from natural gas price volatility. In particular, with the availability of the HX, the microgrid faces a tradeoff between reducing its exposure to the natural gas price and maximising its cost savings. By varying the volatility parameter, we find that the microgrid prefers a direct investment strategy for low levels of volatility and a sequential one for higher levels of volatility.

Suggested Citation

  • Siddiqui, Afzal S. & Maribu, Karl, 2009. "Investment and upgrade in distributed generation under uncertainty," Energy Economics, Elsevier, vol. 31(1), pages 25-37, January.
  • Handle: RePEc:eee:eneeco:v:31:y:2009:i:1:p:25-37
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140-9883(08)00118-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wickart, Marcel & Madlener, Reinhard, 2007. "Optimal technology choice and investment timing: A stochastic model of industrial cogeneration vs. heat-only production," Energy Economics, Elsevier, vol. 29(4), pages 934-952, July.
    2. Paul L. Joskow, 1987. "Productivity Growth and Technical Change in the Generation of Electricity," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 17-38.
    3. Nasakkala, Erkka & Fleten, Stein-Erik, 2005. "Flexibility and technology choice in gas fired power plant investments," Review of Financial Economics, Elsevier, vol. 14(3-4), pages 371-393.
    4. Robert Wilson, 2002. "Architecture of Power Markets," Econometrica, Econometric Society, vol. 70(4), pages 1299-1340, July.
    5. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    6. Fleten, S.-E. & Maribu, K.M. & Wangensteen, I., 2007. "Optimal investment strategies in decentralized renewable power generation under uncertainty," Energy, Elsevier, vol. 32(5), pages 803-815.
    7. Jean-Paul Décamps & Thomas Mariotti & Stéphane Villeneuve, 2006. "Irreversible investment in alternative projects," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(2), pages 425-448, June.
    8. Gollier, Christian & Proult, David & Thais, Francoise & Walgenwitz, Gilles, 2005. "Choice of nuclear power investments under price uncertainty: Valuing modularity," Energy Economics, Elsevier, vol. 27(4), pages 667-685, July.
    9. Brennan, Michael J & Schwartz, Eduardo S, 1985. "Evaluating Natural Resource Investments," The Journal of Business, University of Chicago Press, vol. 58(2), pages 135-157, April.
    10. Robert S. Pindyck, 1999. "The Long-Run Evolutions of Energy Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-27.
    11. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siddiqui, Afzal & Takashima, Ryuta, 2012. "Capacity switching options under rivalry and uncertainty," European Journal of Operational Research, Elsevier, vol. 222(3), pages 583-595.
    2. Siddiqui, Afzal S. & Marnay, Chris, 2008. "Distributed generation investment by a microgrid under uncertainty," Energy, Elsevier, vol. 33(12), pages 1729-1737.
    3. Michail Chronopoulos, Derek Bunn, and Afzal Siddiqui, 2014. "Optionality and Policymaking in Re-Transforming the British Power Market," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    4. Adkins, Roger & Paxson, Dean, 2019. "Rescaling-contraction with a lower cost technology when revenue declines," European Journal of Operational Research, Elsevier, vol. 277(2), pages 574-586.
    5. Detemple, Jerome & Kitapbayev, Yerkin, 2022. "Optimal technology adoption for power generation," Energy Economics, Elsevier, vol. 111(C).
    6. Schachter, J.A. & Mancarella, P., 2016. "A critical review of Real Options thinking for valuing investment flexibility in Smart Grids and low carbon energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 261-271.
    7. Madlener, Reinhard & Stoverink, Simon, 2012. "Power plant investments in the Turkish electricity sector: A real options approach taking into account market liberalization," Applied Energy, Elsevier, vol. 97(C), pages 124-134.
    8. Michail Chronopoulos & Verena Hagspiel & Stein-Erik Fleten, 2017. "Stepwise investment and capacity sizing under uncertainty," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 447-472, March.
    9. Jos Balibrea-Iniesta & Antonio S nchez-Soli o & Antonio Lara-Galera, 2015. "Application of Real Options Theory to the Assessment of Public Incentives for Onshore Wind Energy Development in Spain," International Journal of Energy Economics and Policy, Econjournals, vol. 5(3), pages 791-800.
    10. Kozlova, Mariia, 2017. "Real option valuation in renewable energy literature: Research focus, trends and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 180-196.
    11. Miranda, Oscar & Brandão, Luiz E. & Lazo Lazo, Juan, 2017. "A dynamic model for valuing flexible mining exploration projects under uncertainty," Resources Policy, Elsevier, vol. 52(C), pages 393-404.
    12. Joachim Gahungu and Yves Smeers, 2012. "A Real Options Model for Electricity Capacity Expansion," RSCAS Working Papers 2012/08, European University Institute.
    13. Niall Farrell, Mel T. Devine, William T. Lee, James P. Gleeson, and Sean Lyons, 2017. "Specifying An Efficient Renewable Energy Feed-in Tariff," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    14. GAHUNGU, Joachim & SMEERS, Yves, 2011. "A real options model for electricity capacity expansion," LIDAM Discussion Papers CORE 2011044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    15. Hampe, Jona & Madlener, Reinhard, 2012. "Economics of High-Temperature Nuclear Reactors for Industrial Cogeneration," FCN Working Papers 10/2012, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    16. Kitzing, Lena & Juul, Nina & Drud, Michael & Boomsma, Trine Krogh, 2017. "A real options approach to analyse wind energy investments under different support schemes," Applied Energy, Elsevier, vol. 188(C), pages 83-96.
    17. Siddiqui, Afzal & Fleten, Stein-Erik, 2010. "How to proceed with competing alternative energy technologies: A real options analysis," Energy Economics, Elsevier, vol. 32(4), pages 817-830, July.
    18. Sendstad, Lars Hegnes & Chronopoulos, Michail, 2020. "Sequential investment in renewable energy technologies under policy uncertainty," Energy Policy, Elsevier, vol. 137(C).
    19. Fleten, Stein-Erik & Linnerud, Kristin & Molnár, Peter & Tandberg Nygaard, Maria, 2016. "Green electricity investment timing in practice: Real options or net present value?," Energy, Elsevier, vol. 116(P1), pages 498-506.
    20. Jerome Detemple & Yerkin Kitapbayev, 2021. "Optimal Power Investment and Pandemics: A Micro-Economic Analysis," Energies, MDPI, vol. 14(4), pages 1-25, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:31:y:2009:i:1:p:25-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.