IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v250y2019icp1383-1401.html
   My bibliography  Save this article

A comparative assessment of electrification strategies for industrial sites: Case of milk powder production

Author

Listed:
  • Bühler, Fabian
  • Zühlsdorf, Benjamin
  • Nguyen, Tuong-Van
  • Elmegaard, Brian

Abstract

Denmark has the ambitious plan of being independent from fossil fuels by 2050 and to run the entire energy system based on renewable energy sources. One of the most likely scenarios is a bigger deployment of wind farms and a massive electrification of the industry and transportation sectors. In 2016, the industry sector accounted for 20% of the final energy use, which was by more than 50% covered directly with fossil fuels. Electrification is a promising way for decarbonizing this sector but it will require significant economic investments and changes of the infrastructures. In this work, several strategies for electrifying industrial processes, based on the integration of heat pumps and electric heaters are presented. They were compared using energy, exergy, economic and environmental performance indicators. The production of milk powder was taken as a case study, as current factories are energy-intensive and require high-temperature heat generated by natural gas combustion. The highest energy efficiency and lowest exergy destruction was found for a system using a central heat pump system, with energy savings of 65%. The implementation of decentralised heat pumps that exchange heat between process streams and electric heaters, results in smaller reductions of only 56%. These two systems are likely profitable based on the energy price forecasts from 2020, but the decentral system allows for a gradual implementation of the most cost-effective measures.

Suggested Citation

  • Bühler, Fabian & Zühlsdorf, Benjamin & Nguyen, Tuong-Van & Elmegaard, Brian, 2019. "A comparative assessment of electrification strategies for industrial sites: Case of milk powder production," Applied Energy, Elsevier, vol. 250(C), pages 1383-1401.
  • Handle: RePEc:eee:appene:v:250:y:2019:i:c:p:1383-1401
    DOI: 10.1016/j.apenergy.2019.05.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191930916X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.05.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramírez, C.A. & Patel, M. & Blok, K., 2006. "From fluid milk to milk powder: Energy use and energy efficiency in the European dairy industry," Energy, Elsevier, vol. 31(12), pages 1984-2004.
    2. Chen, Chao & Lu, Yangsiyu & Banares-Alcantara, Rene, 2019. "Direct and indirect electrification of chemical industry using methanol production as a case study," Applied Energy, Elsevier, vol. 243(C), pages 71-90.
    3. Arpagaus, Cordin & Bless, Frédéric & Uhlmann, Michael & Schiffmann, Jürg & Bertsch, Stefan S., 2018. "High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials," Energy, Elsevier, vol. 152(C), pages 985-1010.
    4. Walmsley, Timothy G. & Atkins, Martin J. & Walmsley, Michael R.W. & Philipp, Matthias & Peesel, Ron-Hendrik, 2018. "Process and utility systems integration and optimisation for ultra-low energy milk powder production," Energy, Elsevier, vol. 146(C), pages 67-81.
    5. Fleiter, Tobias & Fehrenbach, Daniel & Worrell, Ernst & Eichhammer, Wolfgang, 2012. "Energy efficiency in the German pulp and paper industry – A model-based assessment of saving potentials," Energy, Elsevier, vol. 40(1), pages 84-99.
    6. Bühler, Fabian & Nguyen, Tuong-Van & Jensen, Jonas Kjær & Holm, Fridolin Müller & Elmegaard, Brian, 2018. "Energy, exergy and advanced exergy analysis of a milk processing factory," Energy, Elsevier, vol. 162(C), pages 576-592.
    7. Yildirim, Nurdan & Genc, Seda, 2015. "Thermodynamic analysis of a milk pasteurization process assisted by geothermal energy," Energy, Elsevier, vol. 90(P1), pages 987-996.
    8. Meroni, Andrea & Zühlsdorf, Benjamin & Elmegaard, Brian & Haglind, Fredrik, 2018. "Design of centrifugal compressors for heat pump systems," Applied Energy, Elsevier, vol. 232(C), pages 139-156.
    9. Berghout, Niels & Meerman, Hans & van den Broek, Machteld & Faaij, André, 2019. "Assessing deployment pathways for greenhouse gas emissions reductions in an industrial plant – A case study for a complex oil refinery," Applied Energy, Elsevier, vol. 236(C), pages 354-378.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Esmanur Uçal & Hasan Yildizhan & Arman Ameen & Zafer Erbay, 2023. "Assessment of Whole Milk Powder Production by a Cumulative Exergy Consumption Approach," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    2. Boldyryev, Stanislav & Gil, Tatyana & Ilchenko, Mariia, 2022. "Environmental and economic assessment of the efficiency of heat exchanger network retrofit options based on the experience of society and energy price records," Energy, Elsevier, vol. 260(C).
    3. Foslie, Sverre Stefanussen & Knudsen, Brage Rugstad & Korpås, Magnus, 2023. "Integrated design and operational optimization of energy systems in dairies," Energy, Elsevier, vol. 281(C).
    4. Lincoln, Benjamin James & Kong, Lana & Pineda, Alyssa Mae & Walmsley, Timothy Gordon, 2022. "Process integration and electrification for efficient milk evaporation systems," Energy, Elsevier, vol. 258(C).
    5. Ron-Hendrik Hechelmann & Jan-Peter Seevers & Alexander Otte & Jan Sponer & Matthias Stark, 2020. "Renewable Energy Integration for Steam Supply of Industrial Processes—A Food Processing Case Study," Energies, MDPI, vol. 13(10), pages 1-20, May.
    6. Layritz, Lucia S. & Dolganova, Iulia & Finkbeiner, Matthias & Luderer, Gunnar & Penteado, Alberto T. & Ueckerdt, Falko & Repke, Jens-Uwe, 2021. "The potential of direct steam cracker electrification and carbon capture & utilization via oxidative coupling of methane as decarbonization strategies for ethylene production," Applied Energy, Elsevier, vol. 296(C).
    7. Ali Hasanbeigi & M. Jibran S. Zuberi, 2022. "Electrification of Steam and Thermal Oil Boilers in the Textile Industry: Techno-Economic Analysis for China, Japan, and Taiwan," Energies, MDPI, vol. 15(23), pages 1-21, December.
    8. Walden, Jasper V.M. & Bähr, Martin & Glade, Anselm & Gollasch, Jens & Tran, A. Phong & Lorenz, Tom, 2023. "Nonlinear operational optimization of an industrial power-to-heat system with a high temperature heat pump, a thermal energy storage and wind energy," Applied Energy, Elsevier, vol. 344(C).
    9. Xiaoyang Hou & Shuai Zhong & Jian’an Zhao, 2022. "A Critical Review on Decarbonizing Heating in China: Pathway Exploration for Technology with Multi-Sector Applications," Energies, MDPI, vol. 15(3), pages 1-23, February.
    10. Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    11. Stella Oberle & Marius Neuwirth & Till Gnann & Martin Wietschel, 2022. "Can Industry Keep Gas Distribution Networks Alive? Future Development of the Gas Network in a Decarbonized World: A German Case Study," Energies, MDPI, vol. 15(24), pages 1-20, December.
    12. Rissman, Jeffrey & Bataille, Chris & Masanet, Eric & Aden, Nate & Morrow, William R. & Zhou, Nan & Elliott, Neal & Dell, Rebecca & Heeren, Niko & Huckestein, Brigitta & Cresko, Joe & Miller, Sabbie A., 2020. "Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070," Applied Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Huayu & Zhang, Yuhao & Gao, Wenhua & Yan, Bowen & Zhao, Jianxin & Zhang, Hao & Chen, Wei & Fan, Daming, 2021. "Steam replacement strategy using microwave resonance: A future system for continuous-flow heating applications," Applied Energy, Elsevier, vol. 283(C).
    2. Liu, Hua & Zhao, Baiyang & Zhang, Zhiping & Li, Hongbo & Hu, Bin & Wang, R.Z., 2020. "Experimental validation of an advanced heat pump system with high-efficiency centrifugal compressor," Energy, Elsevier, vol. 213(C).
    3. Ron-Hendrik Hechelmann & Jan-Peter Seevers & Alexander Otte & Jan Sponer & Matthias Stark, 2020. "Renewable Energy Integration for Steam Supply of Industrial Processes—A Food Processing Case Study," Energies, MDPI, vol. 13(10), pages 1-20, May.
    4. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2023. "Energy Indicators for Enabling Energy Transition in Industry," Energies, MDPI, vol. 16(2), pages 1-18, January.
    5. Mateu-Royo, Carlos & Navarro-Esbrí, Joaquín & Mota-Babiloni, Adrián & Molés, Francisco & Amat-Albuixech, Marta, 2019. "Experimental exergy and energy analysis of a novel high-temperature heat pump with scroll compressor for waste heat recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Lincoln, Benjamin James & Kong, Lana & Pineda, Alyssa Mae & Walmsley, Timothy Gordon, 2022. "Process integration and electrification for efficient milk evaporation systems," Energy, Elsevier, vol. 258(C).
    7. Philipp, Matthias & Schumm, Gregor & Heck, Patrick & Schlosser, Florian & Peesel, Ron-Hendrik & Walmsley, Timothy G. & Atkins, Martin J., 2018. "Increasing energy efficiency of milk product batch sterilisation," Energy, Elsevier, vol. 164(C), pages 995-1010.
    8. Jian Sun & Yinwu Wang & Yu Qin & Guoshun Wang & Ran Liu & Yongping Yang, 2023. "A Review of Super-High-Temperature Heat Pumps over 100 °C," Energies, MDPI, vol. 16(12), pages 1-18, June.
    9. Gurjeet Singh & K. Chopra & V. V. Tyagi & A. K. Pandey & R. K. Sharma & Ahmet Sari, 2022. "Estimation of thermodynamic and enviroeconomic characteristics of khoa (milk food) production unit," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 12542-12581, November.
    10. Dario Friso & Lucia Bortolini & Federica Tono, 2020. "Exergetic Analysis and Exergy Loss Reduction in the Milk Pasteurization for Italian Cheese Production," Energies, MDPI, vol. 13(3), pages 1-16, February.
    11. Uusitalo, Antti & Turunen-Saaresti, Teemu & Honkatukia, Juha & Tiainen, Jonna & Jaatinen-Värri, Ahti, 2020. "Numerical analysis of working fluids for large scale centrifugal compressor driven cascade heat pumps upgrading waste heat," Applied Energy, Elsevier, vol. 269(C).
    12. Son, Hyunsoo & Kim, Miae & Kim, Jin-Kuk, 2022. "Sustainable process integration of electrification technologies with industrial energy systems," Energy, Elsevier, vol. 239(PB).
    13. de Raad, Brendon & van Lieshout, Marit & Stougie, Lydia & Ramirez, Andrea, 2023. "Exploring impacts of deployment sequences of industrial mitigation measures on their combined CO2 reduction potential," Energy, Elsevier, vol. 262(PB).
    14. Kim, Jin-Kuk, 2022. "Studies on the conceptual design of energy recovery and utility systems for electrified chemical processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    15. Altayib, Khalid & Dincer, Ibrahim, 2022. "Development of an integrated hydropower system with hydrogen and methanol production," Energy, Elsevier, vol. 240(C).
    16. Ahmetović, Elvis & Ibrić, Nidret & Kravanja, Zdravko & Grossmann, Ignacio E. & Maréchal, François & Čuček, Lidija & Kermani, Maziar, 2018. "Simultaneous optimisation and heat integration of evaporation systems including mechanical vapour recompression and background process," Energy, Elsevier, vol. 158(C), pages 1160-1191.
    17. Mehar Ullah & Daniel Gutierrez-Rojas & Eero Inkeri & Tero Tynjälä & Pedro H. J. Nardelli, 2022. "Operation of Power-to-X-Related Processes Based on Advanced Data-Driven Methods: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-17, October.
    18. Hadi Tannous & Valentina Stojceska & Savas A. Tassou, 2023. "The Use of Solar Thermal Heating in SPIRE and Non-SPIRE Industrial Processes," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    19. Chen, Weixiong & Qian, Yiran & Tang, Xin & Fang, Huawei & Yi, Jingwei & Liang, Tiebo & Zhao, Quanbin & Yan, Junjie, 2023. "System-component combined design and comprehensive evaluation of closed-air Brayton cycle," Energy, Elsevier, vol. 278(C).
    20. Ramadan, Mohamad & Murr, Rabih & Khaled, Mahmoud & Olabi, Abdul Ghani, 2018. "Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery," Energy, Elsevier, vol. 149(C), pages 1010-1021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:250:y:2019:i:c:p:1383-1401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.