IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i18p4927-d1750826.html
   My bibliography  Save this article

Operational Study of a Solar Thermal Installation with Recirculation for Industrial Applications

Author

Listed:
  • Jazmin Martínez-Sánchez

    (Department of Chemical Engineering, University of Guanajuato, Guanajuato 36050, Mexico)

  • Guillermo Martínez-Rodríguez

    (Department of Chemical Engineering, University of Guanajuato, Guanajuato 36050, Mexico)

  • Cristobal R. Diaz-de-Leon

    (Department of Chemical Engineering, University of Guanajuato, Guanajuato 36050, Mexico)

  • Juan-Carlos Baltazar

    (Department of Architecture, Texas A&M University, College Station, TX 3581, USA)

Abstract

The solar thermal collector network (SCN) and the thermal energy storage system (TES) represent 90% of the solar thermal installation (STI) total costs. STI occupies 30 hectares, and any reduction is significant for the environment. The proposed approach, which includes a solar thermal plant with recirculation, a mixer, and a heat exchanger, reduces investment costs and environmental impact. It facilitates mixing in a simple tank. The developed methodology reduces the number of collectors and the size of the storage system. An industrial-powdered milk process is the case study. Two scenarios and the base case were evaluated. The four seasons and critical meteorological conditions were considered. Scenario one, without a heat exchanger, presents energy surpluses in three seasons. The second scenario, with a heat exchanger, heats the feedwater and guarantees the heat load and target temperature on critical days of the year. In this second scenario, it is possible to reduce the tank filling time from 8 to 7 h. Up to five parallels were reduced in both scenarios, with mass flow of 0.125 kg/s and up to 3.75% of the total tank volume of 52.65 m 3 (mass flow 0.075 kg/s). The optimized system is cost-effective, and 10.20% of the total cost was reduced. This methodology can be applied to any low-temperature STI.

Suggested Citation

  • Jazmin Martínez-Sánchez & Guillermo Martínez-Rodríguez & Cristobal R. Diaz-de-Leon & Juan-Carlos Baltazar, 2025. "Operational Study of a Solar Thermal Installation with Recirculation for Industrial Applications," Energies, MDPI, vol. 18(18), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:18:p:4927-:d:1750826
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/18/4927/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/18/4927/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bühler, Fabian & Zühlsdorf, Benjamin & Nguyen, Tuong-Van & Elmegaard, Brian, 2019. "A comparative assessment of electrification strategies for industrial sites: Case of milk powder production," Applied Energy, Elsevier, vol. 250(C), pages 1383-1401.
    2. Guillermo Martínez-Rodríguez & Héctor H. Silviano-Mendoza & Amanda L. Fuentes-Silva & Juan-Carlos Baltazar, 2024. "Continuous Solar Thermal Energy Production Based on Critical Irradiance Levels for Industrial Applications," Energies, MDPI, vol. 17(5), pages 1-17, February.
    3. Kalogirou, Soteris, 2003. "The potential of solar industrial process heat applications," Applied Energy, Elsevier, vol. 76(4), pages 337-361, December.
    4. Guillermo Martínez-Rodríguez & Amanda L. Fuentes-Silva & Juan R. Lizárraga-Morazán & Martín Picón-Núñez, 2019. "Incorporating the Concept of Flexible Operation in the Design of Solar Collector Fields for Industrial Applications," Energies, MDPI, vol. 12(3), pages 1-20, February.
    5. Martínez-Rodríguez, Guillermo & Baltazar, Juan-Carlos & Fuentes-Silva, Amanda L., 2023. "Heat and electric power production using heat pumps assisted with solar thermal energy for industrial applications," Energy, Elsevier, vol. 282(C).
    6. Abrell, Jan & Rausch, Sebastian & Streitberger, Clemens, 2019. "Buffering volatility: Storage investments and technology-specific renewable energy support," Energy Economics, Elsevier, vol. 84(S1).
    7. Nahin Tasmin & Shahjadi Hisan Farjana & Md Rashed Hossain & Santu Golder & M. A. Parvez Mahmud, 2022. "Integration of Solar Process Heat in Industries: A Review," Clean Technol., MDPI, vol. 4(1), pages 1-35, February.
    8. Liu, Baihong & Gao, Wenfeng & Li, Qiong & Chen, Huai & Zhang, Yougang & Ding, Xiang, 2025. "Quantification of thermal stratification and its impact on energy efficiency in solar hot water storage tanks," Energy, Elsevier, vol. 326(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bartali, R. & Vaccari, A. & Prattico, L. & Bolognese, M. & Fronza, N. & Crema, L., 2025. "3D-printed swirler for enhanced heat transfer in evacuated tube solar collectors," Energy, Elsevier, vol. 328(C).
    2. Laveet Kumar & Junaid Ahmed & Mamdouh El Haj Assad & M. Hasanuzzaman, 2022. "Prospects and Challenges of Solar Thermal for Process Heating: A Comprehensive Review," Energies, MDPI, vol. 15(22), pages 1-27, November.
    3. Guillermo Martínez-Rodríguez & Héctor H. Silviano-Mendoza & Amanda L. Fuentes-Silva & Juan-Carlos Baltazar, 2024. "Continuous Solar Thermal Energy Production Based on Critical Irradiance Levels for Industrial Applications," Energies, MDPI, vol. 17(5), pages 1-17, February.
    4. Deymi-Dashtebayaz, Mahdi & Kheir Abadi, Majid & Asadi, Mostafa & Khutornaya, Julia & Sergienko, Olga, 2024. "Investigation of a new solar-wind energy-based heat pump dryer for food waste drying based on different weather conditions," Energy, Elsevier, vol. 290(C).
    5. Behrang Shirizadeh, Quentin Perrier, and Philippe Quirion, 2022. "How Sensitive are Optimal Fully Renewable Power Systems to Technology Cost Uncertainty?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    6. Lozano-Medina, Alexis & Manzano, Luis & Marcos, José D. & Blanco-Marigorta, Ana M., 2019. "Design of a concentrating solar thermal collector installation for a hotel complex in Gran Canaria," Energy, Elsevier, vol. 183(C), pages 803-811.
    7. David-Hernández, Marco A. & Calderon-Vásquez, Ignacio & Battisti, Felipe G. & Cardemil, José M. & Cazorla-Marín, Antonio, 2024. "Design and assessment of a concentrating solar thermal system for industrial process heat with a copper slag packed-bed thermal energy storage," Applied Energy, Elsevier, vol. 376(PA).
    8. Surafel Kifle Teklemariam & Rachele Schiasselloni & Luca Cattani & Fabio Bozzoli, 2025. "Solar Energy Solutions for Healthcare in Rural Areas of Developing Countries: Technologies, Challenges, and Opportunities," Energies, MDPI, vol. 18(15), pages 1-22, July.
    9. Jan Abrell & Sebastian Rausch & Clemens Streitberger, 2022. "The Economic and Climate Value of Flexibility in Green Energy Markets," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(2), pages 289-312, October.
    10. de Miguel, Carlos & Filippini, Massimo & Labandeira, Xavier & Labeaga, José M. & Löschel, Andreas, 2019. "Low-carbon Transitions: Economics and Policy," Energy Economics, Elsevier, vol. 84(S1).
    11. Ehab AlShamaileh & Iessa Sabbe Moosa & Heba Al-Fayyad & Bashar Lahlouh & Hussein A. Kazem & Qusay Abu-Afifeh & Bety S. Al-Saqarat & Muayad Esaifan & Imad Hamadneh, 2022. "Performance Comparison and Light Reflectance of Al, Cu, and Fe Metals in Direct Contact Flat Solar Heating Systems," Energies, MDPI, vol. 15(23), pages 1-15, November.
    12. jia, Teng & Huang, Junpeng & Li, Rui & He, Peng & Dai, Yanjun, 2018. "Status and prospect of solar heat for industrial processes in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 475-489.
    13. Singh, Sukhmeet & Gill, R.S. & Hans, V.S. & Mittal, T.C., 2022. "Experimental performance and economic viability of evacuated tube solar collector assisted greenhouse dryer for sustainable development," Energy, Elsevier, vol. 241(C).
    14. Lizárraga-Morazán, Juan Ramón & Picón-Núñez, Martín, 2024. "Optimal design of parabolic through solar collector networks: A design approach for year-round operation," Energy, Elsevier, vol. 306(C).
    15. Nahin Tasmin & Shahjadi Hisan Farjana & Md Rashed Hossain & Santu Golder & M. A. Parvez Mahmud, 2022. "Integration of Solar Process Heat in Industries: A Review," Clean Technol., MDPI, vol. 4(1), pages 1-35, February.
    16. García-Guendulain, Juan M. & Riesco-Ávila, José M. & Picón-Núñez, Martín, 2020. "Reducing thermal imbalances and flow nonuniformity in solar collectors through the selection of free flow area ratio," Energy, Elsevier, vol. 194(C).
    17. Brayam Valqui & Mort D. Webster & Shanxia Sun & Thomas W. Hertel, 2023. "Coal-Biomass Co-firing within Renewable Portfolio Standards: Strategic Adoption by Heterogeneous Firms and Emissions Implications," The Energy Journal, , vol. 44(5), pages 115-148, September.
    18. Ron-Hendrik Hechelmann & Jan-Peter Seevers & Alexander Otte & Jan Sponer & Matthias Stark, 2020. "Renewable Energy Integration for Steam Supply of Industrial Processes—A Food Processing Case Study," Energies, MDPI, vol. 13(10), pages 1-20, May.
    19. Mekhilef, S. & Saidur, R. & Safari, A., 2011. "A review on solar energy use in industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1777-1790, May.
    20. Naik, Hardik & Baredar, Prashant & Kumar, Anil, 2017. "Medium temperature application of concentrated solar thermal technology: Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 369-378.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:18:p:4927-:d:1750826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.