IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p8888-d983067.html
   My bibliography  Save this article

Performance Comparison and Light Reflectance of Al, Cu, and Fe Metals in Direct Contact Flat Solar Heating Systems

Author

Listed:
  • Ehab AlShamaileh

    (Department of Chemistry, The University of Jordan, Amman 11942, Jordan)

  • Iessa Sabbe Moosa

    (Department of Chemistry, The University of Jordan, Amman 11942, Jordan)

  • Heba Al-Fayyad

    (Department of Chemistry, The University of Jordan, Amman 11942, Jordan
    Department of Chemical Engineering, The University of Jordan, Amman 11942, Jordan)

  • Bashar Lahlouh

    (Department of Physics, The University of Jordan, Amman 11942, Jordan)

  • Hussein A. Kazem

    (Faculty of Engineering, Sohar University, Sohar P.C. 311, Oman)

  • Qusay Abu-Afifeh

    (Department of Chemistry, The University of Jordan, Amman 11942, Jordan
    Department of Land, Water, and Environment, The University of Jordan, Amman 11942, Jordan)

  • Bety S. Al-Saqarat

    (Department of Geology, The University of Jordan, Amman 11942, Jordan)

  • Muayad Esaifan

    (Department of Chemistry, College of Arts and Sciences, University of Petra, Amman 11196, Jordan)

  • Imad Hamadneh

    (Department of Chemistry, The University of Jordan, Amman 11942, Jordan)

Abstract

The Sun is a huge and clean energy source that must be relied upon to reduce greenhouse gases and promote the renewable and sustainable energy transition. In this paper, the testing of Al, Cu, and Fe metals with different thicknesses, both bare and painted matte black, was investigated for solar water heating systems. The used technique was a direct contact flat solar heating system (DCFSHS). Many experiments were run to assess this system in terms of metals’ thicknesses and their thermal conductivities as well. Thicknesses of around 0.35 mm and 1 mm of Cu gave almost similar feedback. Maximum temperatures in the range of 93–97 °C were achieved during the autumn season in Amman, Jordan, while it was approximately 80 °C in winter. It has been confirmed that high water temperatures can be obtained in all used metals, regardless of their thermal conductivities. It was also found that a white color of the solar heater case inner wall leads to an increase in water temperature of approximately 4 °C in comparison to a black color. Furthermore, a light reflectance % test in the wavelength range of 240–840 nm for the studied metals, with both bare and black-painted surfaces, gave a superb result that was in line with the obtained results of the DCFSHS. Our innovative system design for solar water heating is due to improvements in many aspects, such as design, production costs, environment, and weight.

Suggested Citation

  • Ehab AlShamaileh & Iessa Sabbe Moosa & Heba Al-Fayyad & Bashar Lahlouh & Hussein A. Kazem & Qusay Abu-Afifeh & Bety S. Al-Saqarat & Muayad Esaifan & Imad Hamadneh, 2022. "Performance Comparison and Light Reflectance of Al, Cu, and Fe Metals in Direct Contact Flat Solar Heating Systems," Energies, MDPI, vol. 15(23), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8888-:d:983067
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/8888/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/8888/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yassen, Tadahmun A. & Mokhlif, Nassir D. & Eleiwi, Muhammad Asmail, 2019. "Performance investigation of an integrated solar water heater with corrugated absorber surface for domestic use," Renewable Energy, Elsevier, vol. 138(C), pages 852-860.
    2. Kalogirou, Soteris, 2003. "The potential of solar industrial process heat applications," Applied Energy, Elsevier, vol. 76(4), pages 337-361, December.
    3. Davide De Maio & Carmine D’Alessandro & Antonio Caldarelli & Daniela De Luca & Emiliano Di Gennaro & Roberto Russo & Marilena Musto, 2021. "A Selective Solar Absorber for Unconcentrated Solar Thermal Panels," Energies, MDPI, vol. 14(4), pages 1-13, February.
    4. Abu Shadate Faisal Mahamude & Muhamad Kamal Kamarulzaman & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Kaniz Farhana & Rosli Abu Bakar & Talal Yusaf & Sivarao Subramanion & Belal , 2022. "A Comprehensive Review on Efficiency Enhancement of Solar Collectors Using Hybrid Nanofluids," Energies, MDPI, vol. 15(4), pages 1-26, February.
    5. Mehran Dehghan & Carlos F. Pfeiffer & Elyas Rakhshani & Reza Bakhshi-Jafarabadi, 2021. "A Review on Techno-Economic Assessment of Solar Water Heating Systems in the Middle East," Energies, MDPI, vol. 14(16), pages 1-28, August.
    6. Xin Jin & Guiping Lin & Haichuan Jin & Zunru Fu & Haoyang Sun, 2021. "Experimental Research on the Selective Absorption of Solar Energy by Hybrid Nanofluids," Energies, MDPI, vol. 14(23), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pankaj Kumar & Krishna Kumar Sinha & Bojan Đurin & Mukesh Kumar Gupta & Nishant Saxena & Malay Kumar Banerjee & Nikola Kranjčić & Suraj Kumar Singh & Shruti Kanga, 2022. "Economics of Implementing Solar Thermal Heating Systems in the Textile Industry," Energies, MDPI, vol. 15(12), pages 1-21, June.
    2. Wan Afin Fadzlin & Md. Hasanuzzaman & Nasrudin Abd Rahim & Norridah Amin & Zafar Said, 2022. "Global Challenges of Current Building-Integrated Solar Water Heating Technologies and Its Prospects: A Comprehensive Review," Energies, MDPI, vol. 15(14), pages 1-42, July.
    3. jia, Teng & Huang, Junpeng & Li, Rui & He, Peng & Dai, Yanjun, 2018. "Status and prospect of solar heat for industrial processes in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 475-489.
    4. Mekhilef, S. & Saidur, R. & Safari, A., 2011. "A review on solar energy use in industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1777-1790, May.
    5. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Ali M. H. A. Khajah & Simon P. Philbin, 2022. "Techno-Economic Analysis and Modelling of the Feasibility of Wind Energy in Kuwait," Clean Technol., MDPI, vol. 4(1), pages 1-21, January.
    7. Rajput, Usman Jamil & Alhadrami, Hani & Al-Hazmi, Faten & Guo, Quiquan & Yang, Jun, 2017. "Initial investigations of a combined photo-assisted water cleaner and thermal collector," Renewable Energy, Elsevier, vol. 113(C), pages 235-247.
    8. Rojhat Ibrahim & Bálint Baranyai & Haval Abdulkareem & Tamás János Katona, 2023. "Energy Use and Indoor Environment Performance in Sustainably Designed Refugee Shelters: Three Incremental Phases," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
    9. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2012. "Greener energy: Issues and challenges for Pakistan—Solar energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2762-2780.
    10. Rozario, J. & Vora, A.H. & Debnath, S.K. & Pathak, M.J.M. & Pearce, J.M., 2014. "The effects of dispatch strategy on electrical performance of amorphous silicon-based solar photovoltaic-thermal systems," Renewable Energy, Elsevier, vol. 68(C), pages 459-465.
    11. Kumar, Laveet & Hasanuzzaman, M. & Rahim, N.A. & Islam, M.M., 2021. "Modeling, simulation and outdoor experimental performance analysis of a solar-assisted process heating system for industrial process heat," Renewable Energy, Elsevier, vol. 164(C), pages 656-673.
    12. Diego-Ayala, U. & Carrillo, J.G., 2016. "Evaluation of temperature and efficiency in relation to mass flow on a solar flat plate collector in Mexico," Renewable Energy, Elsevier, vol. 96(PA), pages 756-764.
    13. Allouhi, A. & Agrouaz, Y. & Benzakour Amine, Mohammed & Rehman, S. & Buker, M.S. & Kousksou, T. & Jamil, A. & Benbassou, A., 2017. "Design optimization of a multi-temperature solar thermal heating system for an industrial process," Applied Energy, Elsevier, vol. 206(C), pages 382-392.
    14. El Ghazzani, Badreddine & Martinez Plaza, Diego & Ait El Cadi, Radia & Ihlal, Ahmed & Abnay, Brahim & Bouabid, Khalid, 2017. "Thermal plant based on parabolic trough collectors for industrial process heat generation in Morocco," Renewable Energy, Elsevier, vol. 113(C), pages 1261-1275.
    15. Khosravi, Ali & Malekan, Mohammad & Assad, Mamdouh E.H., 2019. "Numerical analysis of magnetic field effects on the heat transfer enhancement in ferrofluids for a parabolic trough solar collector," Renewable Energy, Elsevier, vol. 134(C), pages 54-63.
    16. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional and community solar cooking in India using SK-23 and Scheffler solar cookers: A financial appraisal," Renewable Energy, Elsevier, vol. 120(C), pages 501-511.
    17. Pereira da Cunha, Jose & Eames, Philip, 2016. "Thermal energy storage for low and medium temperature applications using phase change materials – A review," Applied Energy, Elsevier, vol. 177(C), pages 227-238.
    18. Johannes Wette & Florian Sutter & Aránzazu Fernández-García & Stefan Ziegler & Reinhard Dasbach, 2016. "Comparison of Degradation on Aluminum Reflectors for Solar Collectors due to Outdoor Exposure and Accelerated Aging," Energies, MDPI, vol. 9(11), pages 1-16, November.
    19. Lahnine, Lamyae & Idlimam, Ali & Mostafa Mahrouz, & Mghazli, Safa & Hidar, Nadia & Hanine, Hafida & Koutit, Abbes, 2016. "Thermophysical characterization by solar convective drying of thyme conserved by an innovative thermal-biochemical process," Renewable Energy, Elsevier, vol. 94(C), pages 72-80.
    20. Sözen, Adnan & Özalp, Mehmet, 2005. "Solar-driven ejector-absorption cooling system," Applied Energy, Elsevier, vol. 80(1), pages 97-113, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8888-:d:983067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.