IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v384y2025ics0306261925002223.html
   My bibliography  Save this article

Heat exchanger design and performance evaluation for a high-temperature heat pump system under different two-phase correlations: 4E analysis

Author

Listed:
  • Wu, Ding
  • Ma, Bo
  • Huang, Xiaohui
  • Wu, Xian
  • Yang, Yan
  • Wen, Chuang
  • Zhang, Ji

Abstract

Supplying district heat and assisting the integration of renewable electricity, high-temperature heat pump technology is foreseen to play an essential role in renewable energy-powered thermal energy storage systems. However, existing studies on high-temperature heat pump performance prediction are usually based on utilizing specific heat transfer correlations of heat exchangers. It is difficult to guide the selection and combination of the two-phase correlations in the heat exchanger design and system performance assessment of the high-temperature heat pump. In the present study, we aim to focus on the impact of different two-phase correlations, and a comparative study is conducted among 8 correlations (4 flow condensation ones and 4 flow boiling ones) adopted for component design and system performance prediction. The results show that for designed condensers or evaporators, the dimensions, costs, and carbon emissions are significantly affected by different two-phase correlations. Among 16 pairs of two-phase correlations, little fluctuation of the system performance is observed at the design heat source temperature 80 °C. While at off-design heat source temperatures of 85, 90 or 95 °C, the energetic and exergetic performance parameters are significantly affected with high relative differences (9.88% of heating capacity, 3.27% of coefficient of performance, and 6.76% of exergy efficiency). Also, the system's economic and environmental performance indexes are influenced to some extent, with visible relative uncertainties (1.91% of the heating cost, 4.44% of the payback time, and 6.38% of the carbon emission). This research will help to promote the selection and utilization of two-phase correlations for the plate heat exchanger design and system assessment in larger renewable energy-powered high-temperature heat pump applications.

Suggested Citation

  • Wu, Ding & Ma, Bo & Huang, Xiaohui & Wu, Xian & Yang, Yan & Wen, Chuang & Zhang, Ji, 2025. "Heat exchanger design and performance evaluation for a high-temperature heat pump system under different two-phase correlations: 4E analysis," Applied Energy, Elsevier, vol. 384(C).
  • Handle: RePEc:eee:appene:v:384:y:2025:i:c:s0306261925002223
    DOI: 10.1016/j.apenergy.2025.125492
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925002223
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125492?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bühler, Fabian & Zühlsdorf, Benjamin & Nguyen, Tuong-Van & Elmegaard, Brian, 2019. "A comparative assessment of electrification strategies for industrial sites: Case of milk powder production," Applied Energy, Elsevier, vol. 250(C), pages 1383-1401.
    2. Zhang, Sheng & Ocłoń, Paweł & Klemeš, Jiří Jaromír & Michorczyk, Piotr & Pielichowska, Kinga & Pielichowski, Krzysztof, 2022. "Renewable energy systems for building heating, cooling and electricity production with thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    3. Wang, Yongzhen & Li, Chengjun & Zhao, Jun & Wu, Boyuan & Du, Yanping & Zhang, Jing & Zhu, Yilin, 2021. "The above-ground strategies to approach the goal of geothermal power generation in China: State of art and future researches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Lee, Sangwook & Chung, Yoong & Kim, Sunjin & Jeong, Yeonwoo & Kim, Min Soo, 2023. "Predictive optimization method for the waste heat recovery strategy in an electric vehicle heat pump system," Applied Energy, Elsevier, vol. 333(C).
    5. Schellenberg, C. & Lohan, J. & Dimache, L., 2020. "Comparison of metaheuristic optimisation methods for grid-edge technology that leverages heat pumps and thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    6. Usman, Muhammad & Imran, Muhammad & Yang, Youngmin & Lee, Dong Hyun & Park, Byung-Sik, 2017. "Thermo-economic comparison of air-cooled and cooling tower based Organic Rankine Cycle (ORC) with R245fa and R1233zde as candidate working fluids for different geographical climate conditions," Energy, Elsevier, vol. 123(C), pages 353-366.
    7. Yıldız, Çağatay & Seçilmiş, Mustafa & Arıcı, Müslüm & Mert, Mehmet Selçuk & Nižetić, Sandro & Karabay, Hasan, 2023. "An experimental study on a solar-assisted heat pump incorporated with PCM based thermal energy storage unit," Energy, Elsevier, vol. 278(PB).
    8. Sim, Jaehoon & Lee, Hyoin & Jeong, Ji Hwan, 2021. "Optimal design of variable-path heat exchanger for energy efficiency improvement of air-source heat pump system," Applied Energy, Elsevier, vol. 290(C).
    9. Zhu, Tingting & Ommen, Torben & Meesenburg, Wiebke & Thorsen, Jan Eric & Elmegaard, Brian, 2021. "Steady state behavior of a booster heat pump for hot water supply in ultra-low temperature district heating network," Energy, Elsevier, vol. 237(C).
    10. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    11. Wu, Di & Hu, Bin & Wang, R.Z., 2021. "Vapor compression heat pumps with pure Low-GWP refrigerants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    12. Fischer, David & Bernhardt, Josef & Madani, Hatef & Wittwer, Christof, 2017. "Comparison of control approaches for variable speed air source heat pumps considering time variable electricity prices and PV," Applied Energy, Elsevier, vol. 204(C), pages 93-105.
    13. Kosmadakis, George & Neofytou, Panagiotis, 2022. "Reversible high-temperature heat pump/ORC for waste heat recovery in various ships: A techno-economic assessment," Energy, Elsevier, vol. 256(C).
    14. Liu, Dong-xi & Lei, Hai-Yan & Li, Jia-Shu & Dai, Chuan-shan & Xue, Rui & Liu, Xin, 2024. "Optimization of a district heating system coupled with a deep open-loop geothermal well and heat pumps," Renewable Energy, Elsevier, vol. 223(C).
    15. PELELLA, Francesco & ZSEMBINSZKI, Gabriel & VISCITO, Luca & William MAURO, Alfonso & CABEZA, Luisa F., 2023. "Thermo-economic optimization of a multi-source (air/sun/ground) residential heat pump with a water/PCM thermal storage," Applied Energy, Elsevier, vol. 331(C).
    16. Dai, Baomin & Feng, Yining & Liu, Shengchun & Yao, Xiaole & Zhang, Jianing & Wang, Bowen & Wang, Dabiao, 2023. "Dual pressure condensation heating high temperature heat pump using eco-friendly working fluid mixtures for industrial heating processes: 4E analysis," Energy, Elsevier, vol. 283(C).
    17. Abou Elmaaty, Talal M. & Kabeel, A.E. & Mahgoub, M., 2017. "Corrugated plate heat exchanger review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 852-860.
    18. Lee, Da Young & Seo, Byeong Mo & Hong, Sung Hyup & Choi, Jong Min & Lee, Kwang Ho, 2019. "Part load ratio characteristics and energy saving performance of standing column well geothermal heat pump system assisted with storage tank in an apartment," Energy, Elsevier, vol. 174(C), pages 1060-1078.
    19. Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Wang, Lincheng & Jing, Heran, 2022. "Operation mode performance and optimization of a novel coupled air and ground source heat pump system with energy storage: Case study of a hotel building," Renewable Energy, Elsevier, vol. 201(P1), pages 889-903.
    20. Liu, Changwei & Gao, Tieyu, 2019. "Off-design performance analysis of basic ORC, ORC using zeotropic mixtures and composition-adjustable ORC under optimal control strategy," Energy, Elsevier, vol. 171(C), pages 95-108.
    21. Abu-Rayash, Azzam & Dincer, Ibrahim, 2020. "Development of an integrated energy system for smart communities," Energy, Elsevier, vol. 202(C).
    22. Olga Arsenyeva & Leonid Tovazhnyanskyy & Petro Kapustenko & Jiří Jaromír Klemeš & Petar Sabev Varbanov, 2023. "Review of Developments in Plate Heat Exchanger Heat Transfer Enhancement for Single-Phase Applications in Process Industries," Energies, MDPI, vol. 16(13), pages 1-28, June.
    23. Walden, Jasper V.M. & Bähr, Martin & Glade, Anselm & Gollasch, Jens & Tran, A. Phong & Lorenz, Tom, 2023. "Nonlinear operational optimization of an industrial power-to-heat system with a high temperature heat pump, a thermal energy storage and wind energy," Applied Energy, Elsevier, vol. 344(C).
    24. Zhang, Ji & Hu, Xudong & Wu, Ding & Huang, Xiaohui & Wang, Xuehui & Yang, Yan & Wen, Chuang, 2023. "A comparative study on design and performance evaluation of Organic Rankine Cycle (ORC) under different two-phase heat transfer correlations," Applied Energy, Elsevier, vol. 350(C).
    25. Fernández-Seara, José & Pereiro, Alejandro & Bastos, Santiago & Dopazo, J. Alberto, 2012. "Experimental evaluation of a geothermal heat pump for space heating and domestic hot water simultaneous production," Renewable Energy, Elsevier, vol. 48(C), pages 482-488.
    26. Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Yang, Youngmin, 2016. "Comparative assessment of Organic Rankine Cycle integration for low temperature geothermal heat source applications," Energy, Elsevier, vol. 102(C), pages 473-490.
    27. Lee, Minwoo & Kim, Jinyoung & Shin, Hyun Ho & Cho, Wonhee & Kim, Yongchan, 2022. "CO2 emissions and energy performance analysis of ground-source and solar-assisted ground-source heat pumps using low-GWP refrigerants," Energy, Elsevier, vol. 261(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ji & Wu, Ding & Huang, Xiaohui & Hu, Xudong & Fang, Xi & Wen, Chuang, 2024. "Comparative study on the organic rankine cycle off-design performance under different zeotropic mixture flow boiling correlations," Renewable Energy, Elsevier, vol. 226(C).
    2. Bamorovat Abadi, Gholamreza & Kim, Kyung Chun, 2017. "Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1000-1013.
    3. Van Erdeweghe, Sarah & Van Bael, Johan & Laenen, Ben & D’haeseleer, William, 2019. "Design and off-design optimization procedure for low-temperature geothermal organic Rankine cycles," Applied Energy, Elsevier, vol. 242(C), pages 716-731.
    4. Tomc, Urban & Nosan, Simon & Vidrih, Boris & Bogić, Simon & Navickaite, Kristina & Vozel, Katja & Bobič, Miha & Kitanovski, Andrej, 2024. "Small demonstrator of a thermoelectric heat-pump booster for an ultra-low-temperature district-heating substation," Applied Energy, Elsevier, vol. 361(C).
    5. Oh, Jinwoo & Han, Ukmin & Jung, Yujun & Kang, Yong Tae & Lee, Hoseong, 2024. "Advancing waste heat potential assessment for net-zero emissions: A review of demand-based thermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    6. Zhang, Ji & Hu, Xudong & Wu, Ding & Huang, Xiaohui & Wang, Xuehui & Yang, Yan & Wen, Chuang, 2023. "A comparative study on design and performance evaluation of Organic Rankine Cycle (ORC) under different two-phase heat transfer correlations," Applied Energy, Elsevier, vol. 350(C).
    7. Borjigin, Saranmanduh & Zhao, Wenyu & Fu, Wang & Liang, Wenlong & Bai, Suritu & Ma, Jianlong & Meng, Keqilao & Baoyin, Hexi, 2025. "Review of plate heat exchanger utilized for gases heat exchange," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    8. Wang, Enhua & Yu, Zhibin & Collings, Peter, 2017. "Dynamic control strategy of a distillation system for a composition-adjustable organic Rankine cycle," Energy, Elsevier, vol. 141(C), pages 1038-1051.
    9. Jiang, Yuemao & Su, Wen & Wu, Chuang & Wang, Shunsen, 2024. "Enhanced thermally integrated Carnot battery using low-GWP working fluid pair: Multi-aspect analysis and multi-scale optimization," Applied Energy, Elsevier, vol. 376(PA).
    10. Yang, Yi & Huo, Yaowu & Xia, Wenkai & Wang, Xurong & Zhao, Pan & Dai, Yiping, 2017. "Construction and preliminary test of a geothermal ORC system using geothermal resource from abandoned oil wells in the Huabei oilfield of China," Energy, Elsevier, vol. 140(P1), pages 633-645.
    11. Altun, A.F. & Kilic, M., 2020. "Thermodynamic performance evaluation of a geothermal ORC power plant," Renewable Energy, Elsevier, vol. 148(C), pages 261-274.
    12. Li, Jian & Yang, Zhen & Hu, Shuozhuo & Yang, Fubin & Duan, Yuanyuan, 2020. "Thermo-economic analyses and evaluations of small-scale dual-pressure evaporation organic Rankine cycle system using pure fluids," Energy, Elsevier, vol. 206(C).
    13. Zhang, Shijie & Li, Liushuai & Huo, Erguang & Yu, Yujie & Huang, Rui & Wang, Shukun, 2024. "Parameters analysis and techno-economic comparison of various ORCs and sCO2 cycles as the power cycle of Lead–Bismuth molten nuclear micro-reactor," Energy, Elsevier, vol. 295(C).
    14. Wang, Mingtao & Zhang, Juan & Liu, Qiyi & Tan, Luzhi, 2020. "Effects of critical temperature, critical pressure and dryness of working fluids on the performance of the transcritical organic rankine cycle," Energy, Elsevier, vol. 202(C).
    15. Woon, Kok Sin & Phuang, Zhen Xin & Taler, Jan & Varbanov, Petar Sabev & Chong, Cheng Tung & Klemeš, Jiří Jaromír & Lee, Chew Tin, 2023. "Recent advances in urban green energy development towards carbon emissions neutrality," Energy, Elsevier, vol. 267(C).
    16. Imran, Muhammad & Haglind, Fredrik & Asim, Muhammad & Zeb Alvi, Jahan, 2018. "Recent research trends in organic Rankine cycle technology: A bibliometric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 552-562.
    17. Wang, Ruzhu & Yan, Hongzhi & Wu, Di & Jiang, Jiatong & Dong, Yixiu, 2024. "High temperature heat pumps for industrial heating processes using water as refrigerant," Energy, Elsevier, vol. 313(C).
    18. Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Wang, Lincheng & Bai, Ze & Shi, Junzhang, 2024. "Energy and exergy analysis of a novel dual-source heat pump system with integrated phase change energy storage," Renewable Energy, Elsevier, vol. 222(C).
    19. Xu, Weicong & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Mao, Samuel S., 2021. "Is zeotropic working fluid a promising option for organic Rankine cycle: A quantitative evaluation based on literature data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    20. Wang, Dabiao & Dai, Xiaoye & Wu, Zhihua & Zhao, Wu & Wang, Puwei & Hu, Busong & Shi, Lin, 2020. "Design and testing of a 340 kW Organic Rankine Cycle system for Low Pressure Saturated Steam heat source," Energy, Elsevier, vol. 210(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:384:y:2025:i:c:s0306261925002223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.