IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p4976-d1180368.html
   My bibliography  Save this article

Review of Developments in Plate Heat Exchanger Heat Transfer Enhancement for Single-Phase Applications in Process Industries

Author

Listed:
  • Olga Arsenyeva

    (Sustainable Process Integration Laboratory—SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology—VUT Brno, Technická 2896/2, 616 69 Brno, Czech Republic)

  • Leonid Tovazhnyanskyy

    (Department of Integrated Technologies, Processes and Apparatuses, National Technical University “Kharkiv Polytechnic Institute”, 2 Kyrpychova St., 61002 Kharkiv, Ukraine)

  • Petro Kapustenko

    (Sustainable Process Integration Laboratory—SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology—VUT Brno, Technická 2896/2, 616 69 Brno, Czech Republic)

  • Jiří Jaromír Klemeš

    (Sustainable Process Integration Laboratory—SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology—VUT Brno, Technická 2896/2, 616 69 Brno, Czech Republic)

  • Petar Sabev Varbanov

    (Sustainable Process Integration Laboratory—SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology—VUT Brno, Technická 2896/2, 616 69 Brno, Czech Republic)

Abstract

A plate heat exchanger (PHE) is a modern, effective type of heat transfer equipment capable of increasing heat recuperation and energy efficiency. For PHEs, enhanced methods of heat transfer intensification can be further applied using the analysis and knowledge already available in the literature. A review of the main developments in the construction and exploration of PHEs and in the methods of heat transfer intensification is presented in this paper with an analysis of the main construction modifications, such as plate-and-frame, brazed and welded PHEs. The differences between these construction modifications and their influences on the thermal and hydraulic performance of PHEs are discussed. Most modern PHEs have plates with inclined corrugations on their surface that create a strong, rigid construction with multiple contact points between the plates. The methods of PHE exploration are mostly experimental studies and/or CFD modelling. The main corrugation parameters influencing PHE performance are the corrugation inclination angle in relation to the main flow direction and the corrugation aspect ratio. Optimisation of these parameters is one way to enhance PHE performance. Other methods of heat transfer enhancement, including improving the form of the plate corrugations, use of nanofluids and active methods, are considered. Future research directions are proposed, such as improving fundamental understanding, developing new corrugation shapes and optimisation methods and area and cost estimations.

Suggested Citation

  • Olga Arsenyeva & Leonid Tovazhnyanskyy & Petro Kapustenko & Jiří Jaromír Klemeš & Petar Sabev Varbanov, 2023. "Review of Developments in Plate Heat Exchanger Heat Transfer Enhancement for Single-Phase Applications in Process Industries," Energies, MDPI, vol. 16(13), pages 1-28, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4976-:d:1180368
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/4976/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/4976/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abu-Khader, Mazen M., 2012. "Plate heat exchangers: Recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1883-1891.
    2. Leonid Tovazhnyanskyy & Jiří Jaromir Klemeš & Petro Kapustenko & Olga Arsenyeva & Olexandr Perevertaylenko & Pavlo Arsenyev, 2020. "Optimal Design of Welded Plate Heat Exchanger for Ammonia Synthesis Column: An Experimental Study with Mathematical Optimisation," Energies, MDPI, vol. 13(11), pages 1-18, June.
    3. Zhang, Ji & Zhu, Xiaowei & Mondejar, Maria E. & Haglind, Fredrik, 2019. "A review of heat transfer enhancement techniques in plate heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 305-328.
    4. Kibong Kim & Kang Sub Song & Gilbong Lee & Kichang Chang & Yongchan Kim, 2021. "Single-Phase Heat Transfer Characteristics of Water in an Industrial Plate and Shell Heat Exchanger under High-Temperature Conditions," Energies, MDPI, vol. 14(20), pages 1-19, October.
    5. Wang, Bohong & Arsenyeva, Olga & Zeng, Min & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2022. "An advanced Grid Diagram for heat exchanger network retrofit with detailed plate heat exchanger design," Energy, Elsevier, vol. 248(C).
    6. Arsenyeva, O. & Kapustenko, P. & Tovazhnyanskyy, L. & Khavin, G., 2013. "The influence of plate corrugations geometry on plate heat exchanger performance in specified process conditions," Energy, Elsevier, vol. 57(C), pages 201-207.
    7. Kapustenko, Petro O. & Ulyev, Leonid M. & Boldyryev, Stanislav A. & Garev, Andrey O., 2008. "Integration of a heat pump into the heat supply system of a cheese production plant," Energy, Elsevier, vol. 33(6), pages 882-889.
    8. Polyvianchuk, Andrii & Semenenko, Roman & Kapustenko, Petro & Klemeš, Jiří Jaromír & Arsenyeva, Olga, 2023. "The efficiency of innovative technologies for transition to 4th generation of district heating systems in Ukraine," Energy, Elsevier, vol. 263(PD).
    9. Perevertaylenko, Olexander Yu. & Gariev, Andriy O. & Damartzis, Theodoros & Tovazhnyanskyy, Leonid L. & Kapustenko, Petro O. & Arsenyeva, Olga P., 2015. "Searches of cost effective ways for amine absorption unit design in CO2 post-combustion capture process," Energy, Elsevier, vol. 90(P1), pages 105-112.
    10. Mousa, Mohamed H. & Miljkovic, Nenad & Nawaz, Kashif, 2021. "Review of heat transfer enhancement techniques for single phase flows," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    11. Howard Lee & Ali Sadeghianjahromi & Po-Lun Kuo & Chi-Chuan Wang, 2020. "Experimental Investigation of the Thermofluid Characteristics of Shell-and-Plate Heat Exchangers," Energies, MDPI, vol. 13(20), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José Estupiñán-Campos & William Quitiaquez & César Nieto-Londoño & Patricio Quitiaquez, 2024. "Numerical Simulation of the Heat Transfer Inside a Shell and Tube Heat Exchanger Considering Different Variations in the Geometric Parameters of the Design," Energies, MDPI, vol. 17(3), pages 1-17, January.
    2. Reza Afsahnoudeh & Andreas Wortmeier & Maik Holzmüller & Yi Gong & Werner Homberg & Eugeny Y. Kenig, 2023. "Thermo-Hydraulic Performance of Pillow-Plate Heat Exchangers with Secondary Structuring: A Numerical Analysis," Energies, MDPI, vol. 16(21), pages 1, October.
    3. Tomasz Romanowicz & Jan Taler & Magdalena Jaremkiewicz & Tomasz Sobota, 2023. "Determination of Heat Transfer Correlations for Fluids Flowing through Plate Heat Exchangers Needed for Online Monitoring of District Heat Exchanger Fouling," Energies, MDPI, vol. 16(17), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arsenyeva, Olga & Klemeš, Jiří Jaromír & Kapustenko, Petro & Fedorenko, Olena & Kusakov, Sergiy & Kobylnik, Dmytro, 2021. "Plate heat exchanger design for the utilisation of waste heat from exhaust gases of drying process," Energy, Elsevier, vol. 233(C).
    2. Leonid Tovazhnyanskyy & Jiří Jaromir Klemeš & Petro Kapustenko & Olga Arsenyeva & Olexandr Perevertaylenko & Pavlo Arsenyev, 2020. "Optimal Design of Welded Plate Heat Exchanger for Ammonia Synthesis Column: An Experimental Study with Mathematical Optimisation," Energies, MDPI, vol. 13(11), pages 1-18, June.
    3. Petro Kapustenko & Jiří Jaromír Klemeš & Olga Arsenyeva & Leonid Tovazhnyanskyy, 2023. "PHE (Plate Heat Exchanger) for Condensing Duties: Recent Advances and Future Prospects," Energies, MDPI, vol. 16(1), pages 1-18, January.
    4. Azeez mohammed Hussein, Hind & Zulkifli, Rozli & Faizal Bin Wan Mahmood, Wan Mohd & Ajeel, Raheem K., 2022. "Structure parameters and designs and their impact on performance of different heat exchangers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Gürdal, Mehmet & Arslan, Kamil & Gedik, Engin & Minea, Alina Adriana, 2022. "Effects of using nanofluid, applying a magnetic field, and placing turbulators in channels on the convective heat transfer: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    6. Ebrahimzadeh, Edris & Wilding, Paul & Frankman, David & Fazlollahi, Farhad & Baxter, Larry L., 2016. "Theoretical and experimental analysis of dynamic heat exchanger: Retrofit configuration," Energy, Elsevier, vol. 96(C), pages 545-560.
    7. Carapellucci, Roberto & Giordano, Lorena & Vaccarelli, Maura, 2017. "Application of an amine-based CO2 capture system in retrofitting combined gas-steam power plants," Energy, Elsevier, vol. 118(C), pages 808-826.
    8. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new ejector heat exchanger based on an ejector heat pump and a water-to-water heat exchanger," Applied Energy, Elsevier, vol. 121(C), pages 245-251.
    9. Arsenyeva, Olga & Klemeš, Jiří Jaromír & Klochock, Eugeny & Kapustenko, Petro, 2023. "The effect of plate size and corrugation pattern on plate heat exchanger performance in specific conditions of steam-air mixture condensation," Energy, Elsevier, vol. 263(PC).
    10. Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    11. Daniarta, Sindu & Nemś, Magdalena & Kolasiński, Piotr, 2023. "A review on thermal energy storage applicable for low- and medium-temperature organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
    12. Karakaya, Ahmet & Özilgen, Mustafa, 2011. "Energy utilization and carbon dioxide emission in the fresh, paste, whole-peeled, diced, and juiced tomato production processes," Energy, Elsevier, vol. 36(8), pages 5101-5110.
    13. Nimmanterdwong, Prathana & Chalermsinsuwan, Benjapon & Piumsomboon, Pornpote, 2017. "Emergy analysis of three alternative carbon dioxide capture processes," Energy, Elsevier, vol. 128(C), pages 101-108.
    14. Janusz T. Cieśliński & Dawid Lubocki & Slawomir Smolen, 2022. "Impact of Temperature and Nanoparticle Concentration on Turbulent Forced Convective Heat Transfer of Nanofluids," Energies, MDPI, vol. 15(20), pages 1-22, October.
    15. Kang, Lixia & Liu, Yongzhong, 2015. "Multi-objective optimization on a heat exchanger network retrofit with a heat pump and analysis of CO2 emissions control," Applied Energy, Elsevier, vol. 154(C), pages 696-708.
    16. Ma, Qian & Chang, Yuan & Yuan, Bo & Song, Zhaozheng & Xue, Jinjun & Jiang, Qingzhe, 2022. "Utilizing carbon dioxide from refinery flue gas for methanol production: System design and assessment," Energy, Elsevier, vol. 249(C).
    17. Picón-Núñez, Martín & Rumbo-Arias, Jamel E., 2021. "Improving thermal energy recovery systems using welded plate heat exchangers," Energy, Elsevier, vol. 235(C).
    18. Siwen Gu & Xiuna Zhuang & Chenying Li & Shuai Zhang & Jiaan Wang & Yu Zhuang, 2022. "Multi-Objective Optimal Design and Operation of Heat Exchanger Networks with Controllability Consideration," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    19. Kapustenko, Petro & Klemeš, Jiří Jaromír & Arsenyeva, Olga & Tovazhnyanskyy, Leonid & Zorenko, Viktor, 2021. "Pressure drop in two phase flow of condensing air-steam mixture inside PHE channels formed by plates with corrugations of different geometries," Energy, Elsevier, vol. 228(C).
    20. Xuan Hoang Khoa Le & Ioan Pop & Mikhail A. Sheremet, 2021. "Thermogravitational Convective Flow and Energy Transport in an Electronic Cabinet with a Heat-Generating Element and Solid/Porous Finned Heat Sink," Mathematics, MDPI, vol. 10(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4976-:d:1180368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.