IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v57y2013icp201-207.html
   My bibliography  Save this article

The influence of plate corrugations geometry on plate heat exchanger performance in specified process conditions

Author

Listed:
  • Arsenyeva, O.
  • Kapustenko, P.
  • Tovazhnyanskyy, L.
  • Khavin, G.

Abstract

The mathematical model of plate heat exchanger (PHE) is developed using decomposition of the plate on its main corrugated field, which cause major effect on heat transfer, and distribution zone, which influences mostly the hydraulic performance. Model is validated on experimental data for some commercial plates. It is shown, that for specified pressure drop, temperature program and heat load the geometrical parameters of plate and its corrugations, which are enable to make PHE with minimal heat transfer area, can be found. The developed mathematical model can be used for designing of plates with geometry, which is in the best way satisfying process conditions of the certain specific range. The case study for conditions of PHE application in District Heating systems is presented.

Suggested Citation

  • Arsenyeva, O. & Kapustenko, P. & Tovazhnyanskyy, L. & Khavin, G., 2013. "The influence of plate corrugations geometry on plate heat exchanger performance in specified process conditions," Energy, Elsevier, vol. 57(C), pages 201-207.
  • Handle: RePEc:eee:energy:v:57:y:2013:i:c:p:201-207
    DOI: 10.1016/j.energy.2012.12.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212009619
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.12.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perry, Simon & Klemeš, Jiří & Bulatov, Igor, 2008. "Integrating waste and renewable energy to reduce the carbon footprint of locally integrated energy sectors," Energy, Elsevier, vol. 33(10), pages 1489-1497.
    2. Pandey, Shive Dayal & Nema, V.K., 2011. "An experimental investigation of exergy loss reduction in corrugated plate heat exchanger," Energy, Elsevier, vol. 36(5), pages 2997-3001.
    3. Varbanov, Petar Sabev & Fodor, Zsófia & Klemeš, Jiří Jaromír, 2012. "Total Site targeting with process specific minimum temperature difference (ΔTmin)," Energy, Elsevier, vol. 44(1), pages 20-28.
    4. Arsenyeva, Olga P. & Tovazhnyansky, Leonid L. & Kapustenko, Petro O. & Khavin, Gennadiy L., 2011. "Optimal design of plate-and-frame heat exchangers for efficient heat recovery in process industries," Energy, Elsevier, vol. 36(8), pages 4588-4598.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kapustenko, Petro O. & Klemeš, Jiří Jaromír & Matsegora, Oleksandr I. & Arsenyev, Pavlo Y. & Arsenyeva, Olga P., 2019. "Accounting for local thermal and hydraulic parameters of water fouling development in plate heat exchanger," Energy, Elsevier, vol. 174(C), pages 1049-1059.
    2. Wang, Bohong & Arsenyeva, Olga & Zeng, Min & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2022. "An advanced Grid Diagram for heat exchanger network retrofit with detailed plate heat exchanger design," Energy, Elsevier, vol. 248(C).
    3. Olga Arsenyeva & Leonid Tovazhnyanskyy & Petro Kapustenko & Jiří Jaromír Klemeš & Petar Sabev Varbanov, 2023. "Review of Developments in Plate Heat Exchanger Heat Transfer Enhancement for Single-Phase Applications in Process Industries," Energies, MDPI, vol. 16(13), pages 1-28, June.
    4. Ebrahimzadeh, Edris & Wilding, Paul & Frankman, David & Fazlollahi, Farhad & Baxter, Larry L., 2016. "Theoretical and experimental analysis of dynamic heat exchanger: Retrofit configuration," Energy, Elsevier, vol. 96(C), pages 545-560.
    5. Chen, Jingjing & Hai, Zhong & Lu, Xiaohua & Wang, Changsong & Ji, Xiaoyan, 2020. "Heat-transfer enhancement for corn straw slurry from biogas plants by twisted hexagonal tubes," Applied Energy, Elsevier, vol. 262(C).
    6. Petro Kapustenko & Jiří Jaromír Klemeš & Olga Arsenyeva & Leonid Tovazhnyanskyy, 2023. "PHE (Plate Heat Exchanger) for Condensing Duties: Recent Advances and Future Prospects," Energies, MDPI, vol. 16(1), pages 1-18, January.
    7. Leonid Tovazhnyanskyy & Jiří Jaromir Klemeš & Petro Kapustenko & Olga Arsenyeva & Olexandr Perevertaylenko & Pavlo Arsenyev, 2020. "Optimal Design of Welded Plate Heat Exchanger for Ammonia Synthesis Column: An Experimental Study with Mathematical Optimisation," Energies, MDPI, vol. 13(11), pages 1-18, June.
    8. Igor Korobiichuk & Viktorij Mel’nick & Vladyslav Shybetskyi & Sergii Kostyk & Myroslava Kalinina, 2022. "Optimization of Heat Exchange Plate Geometry by Modeling Physical Processes Using CAD," Energies, MDPI, vol. 15(4), pages 1-18, February.
    9. Arsenyeva, Olga & Klemeš, Jiří Jaromír & Kapustenko, Petro & Fedorenko, Olena & Kusakov, Sergiy & Kobylnik, Dmytro, 2021. "Plate heat exchanger design for the utilisation of waste heat from exhaust gases of drying process," Energy, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boldyryev, Stanislav & Varbanov, Petar Sabev, 2015. "Low potential heat utilization of bromine plant via integration on process and Total Site levels," Energy, Elsevier, vol. 90(P1), pages 47-55.
    2. Klemeš, Jiří Jaromír & Kravanja, Zdravko & Varbanov, Petar Sabev & Lam, Hon Loong, 2013. "Advanced multimedia engineering education in energy, process integration and optimisation," Applied Energy, Elsevier, vol. 101(C), pages 33-40.
    3. Pirmohamadi, Alireza & Ghazi, Mehrangiz & Nikian, Mohammad, 2019. "Optimal design of cogeneration systems in total site using exergy approach," Energy, Elsevier, vol. 166(C), pages 1291-1302.
    4. Tarighaleslami, Amir H. & Walmsley, Timothy G. & Atkins, Martin J. & Walmsley, Michael R.W. & Liew, Peng Yen & Neale, James R., 2017. "A Unified Total Site Heat Integration targeting method for isothermal and non-isothermal utilities," Energy, Elsevier, vol. 119(C), pages 10-25.
    5. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    6. Bertrand, Alexandre & Mastrucci, Alessio & Schüler, Nils & Aggoune, Riad & Maréchal, François, 2017. "Characterisation of domestic hot water end-uses for integrated urban thermal energy assessment and optimisation," Applied Energy, Elsevier, vol. 186(P2), pages 152-166.
    7. Khairulnadzmi Jamaluddin & Sharifah Rafidah Wan Alwi & Khaidzir Hamzah & Jiří Jaromír Klemeš, 2020. "A Numerical Pinch Analysis Methodology for Optimal Sizing of a Centralized Trigeneration System with Variable Energy Demands," Energies, MDPI, vol. 13(8), pages 1-35, April.
    8. Liew, Peng Yen & Walmsley, Timothy Gordon & Wan Alwi, Sharifah Rafidah & Abdul Manan, Zainuddin & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2016. "Integrating district cooling systems in Locally Integrated Energy Sectors through Total Site Heat Integration," Applied Energy, Elsevier, vol. 184(C), pages 1350-1363.
    9. Abu-Khader, Mazen M., 2012. "Plate heat exchangers: Recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1883-1891.
    10. Liew, Peng Yen & Theo, Wai Lip & Wan Alwi, Sharifah Rafidah & Lim, Jeng Shiun & Abdul Manan, Zainuddin & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2017. "Total Site Heat Integration planning and design for industrial, urban and renewable systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 964-985.
    11. Faramarzi, Simin & Tahouni, Nassim & Panjeshahi, M. Hassan, 2022. "Pressure drop optimization in Total Site targeting - A more realistic approach to energy- capital trade-off," Energy, Elsevier, vol. 251(C).
    12. Ebrahimzadeh, Edris & Wilding, Paul & Frankman, David & Fazlollahi, Farhad & Baxter, Larry L., 2016. "Theoretical and experimental analysis of dynamic heat exchanger: Retrofit configuration," Energy, Elsevier, vol. 96(C), pages 545-560.
    13. Stijepovic, Vladimir Z. & Linke, Patrick & Stijepovic, Mirko Z. & Kijevčanin, Mirjana Lj. & Šerbanović, Slobodan, 2012. "Targeting and design of industrial zone waste heat reuse for combined heat and power generation," Energy, Elsevier, vol. 47(1), pages 302-313.
    14. Sun, Li & Doyle, Steve & Smith, Robin, 2015. "Heat recovery and power targeting in utility systems," Energy, Elsevier, vol. 84(C), pages 196-206.
    15. Matsuda, Kazuo & Hirochi, Yoshiichi & Tatsumi, Hiroyuki & Shire, Tim, 2009. "Applying heat integration total site based pinch technology to a large industrial area in Japan to further improve performance of highly efficient process plants," Energy, Elsevier, vol. 34(10), pages 1687-1692.
    16. Nyong-Bassey, Bassey Etim & Giaouris, Damian & Patsios, Charalampos & Papadopoulou, Simira & Papadopoulos, Athanasios I. & Walker, Sara & Voutetakis, Spyros & Seferlis, Panos & Gadoue, Shady, 2020. "Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty," Energy, Elsevier, vol. 193(C).
    17. Varbanov, Petar Sabev & Fodor, Zsófia & Klemeš, Jiří Jaromír, 2012. "Total Site targeting with process specific minimum temperature difference (ΔTmin)," Energy, Elsevier, vol. 44(1), pages 20-28.
    18. Gassner, Martin & Maréchal, François, 2009. "Thermodynamic comparison of the FICFB and Viking gasification concepts," Energy, Elsevier, vol. 34(10), pages 1744-1753.
    19. Stijepovic, Mirko Z. & Papadopoulos, Athanasios I. & Linke, Patrick & Grujic, Aleksandar S. & Seferlis, Panos, 2014. "An exergy composite curves approach for the design of optimum multi-pressure organic Rankine cycle processes," Energy, Elsevier, vol. 69(C), pages 285-298.
    20. Wallerand, Anna S. & Kermani, Maziar & Voillat, Régis & Kantor, Ivan & Maréchal, François, 2018. "Optimal design of solar-assisted industrial processes considering heat pumping: Case study of a dairy," Renewable Energy, Elsevier, vol. 128(PB), pages 565-585.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:57:y:2013:i:c:p:201-207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.