IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v222y2024ics0960148123018207.html
   My bibliography  Save this article

Energy and exergy analysis of a novel dual-source heat pump system with integrated phase change energy storage

Author

Listed:
  • Wang, Yubo
  • Quan, Zhenhua
  • Zhao, Yaohua
  • Wang, Lincheng
  • Bai, Ze
  • Shi, Junzhang

Abstract

In order to improve the application of renewable energy in cold regions and overcome the drawback of the low performance of traditional air source heat pumps (ASHP) in a low temperature environment, a novel type of dual-source heat pump system is proposed, which includes a heat pump, photovoltaic–thermal (PVT) modules, an air heat exchanger, and phase-change energy storage equipment. In response to different outdoor environmental parameters, the heat pump can use the PVT, ambient air, or solidification latent heat of water in the ice tank as the heat source. This study focuses on analyzing the applicability of this novel system in residential buildings. Firstly, the thermodynamic performance of the system under typical operating conditions is experimentally analyzed, proving that the system can effectively utilize solar energy under low solar irradiation. Then, the operational strategy of the system is optimized with the optimization goal of system exergy efficiency. Finally, the continuous operation performance of the system in winter is simulated and analyzed. The results show that the utilization ratio of solar energy reaches 2/3 in winter. Compared with the traditional ASHP system, the energy-saving rate of the novel system is 73.6 %, which can reduce the carbon emissions by 69 %. These results provide technical guidance for the application of the novel system in residential buildings in cold regions.

Suggested Citation

  • Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Wang, Lincheng & Bai, Ze & Shi, Junzhang, 2024. "Energy and exergy analysis of a novel dual-source heat pump system with integrated phase change energy storage," Renewable Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123018207
    DOI: 10.1016/j.renene.2023.119905
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123018207
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119905?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Jingyong & Zhou, Haihua & Xu, Lijie & Shi, Zhengrong & Zhang, Tao & Ji, Jie, 2022. "Energy and exergy analysis of a novel solar-air composite source multi-functional heat pump," Renewable Energy, Elsevier, vol. 185(C), pages 32-46.
    2. PELELLA, Francesco & ZSEMBINSZKI, Gabriel & VISCITO, Luca & William MAURO, Alfonso & CABEZA, Luisa F., 2023. "Thermo-economic optimization of a multi-source (air/sun/ground) residential heat pump with a water/PCM thermal storage," Applied Energy, Elsevier, vol. 331(C).
    3. Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Wang, Lincheng & Liu, Zichu, 2022. "Performance and optimization of a novel solar-air source heat pump building energy supply system with energy storage," Applied Energy, Elsevier, vol. 324(C).
    4. Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Wang, Lincheng & Jing, Heran, 2022. "Operation mode performance and optimization of a novel coupled air and ground source heat pump system with energy storage: Case study of a hotel building," Renewable Energy, Elsevier, vol. 201(P1), pages 889-903.
    5. Jin, Xin & Zhang, Huihui & Huang, Gongsheng & Lai, Alvin CK., 2021. "Experimental investigation on the dynamic thermal performance of the parallel solar-assisted air-source heat pump latent heat thermal energy storage system," Renewable Energy, Elsevier, vol. 180(C), pages 637-657.
    6. Li, L.T. & Wang, W. & Sun, Y.Y. & Feng, Y.C. & Lu, W.P. & Zhu, J.H. & Ge, Y.J., 2014. "Investigation of defrosting water retention on the surface of evaporator impacting the performance of air source heat pump during periodic frosting–defrosting cycles," Applied Energy, Elsevier, vol. 135(C), pages 98-107.
    7. Cai, Jingyong & Zhang, Feng & Ji, Jie, 2020. "Comparative analysis of solar-air dual source heat pump system with different heat source configurations," Renewable Energy, Elsevier, vol. 150(C), pages 191-203.
    8. Zhu Liu & Dabo Guan & Scott Moore & Henry Lee & Jun Su & Qiang Zhang, 2015. "Climate policy: Steps to China's carbon peak," Nature, Nature, vol. 522(7556), pages 279-281, June.
    9. Chua, K.J. & Chou, S.K. & Yang, W.M., 2010. "Advances in heat pump systems: A review," Applied Energy, Elsevier, vol. 87(12), pages 3611-3624, December.
    10. Wang, Chenguang & Gong, Guangcai & Su, Huan & Wah Yu, Chuck, 2015. "Efficacy of integrated photovoltaics-air source heat pump systems for application in Central-south China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1190-1197.
    11. Besagni, Giorgio & Croci, Lorenzo & Nesa, Riccardo & Molinaroli, Luca, 2019. "Field study of a novel solar-assisted dual-source multifunctional heat pump," Renewable Energy, Elsevier, vol. 132(C), pages 1185-1215.
    12. Ahamed, J.U. & Saidur, R. & Masjuki, H.H., 2011. "A review on exergy analysis of vapor compression refrigeration system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1593-1600, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Zilong & Lv, Guoquan & Xu, Yanwen & Lin, Yu-Feng & Wang, Pingfeng & Wang, Xinlei, 2024. "Enhancing ground source heat pump system design optimization: A stochastic model incorporating transient geological factors and decision variables," Renewable Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Wang, Lincheng & Liu, Zichu, 2022. "Performance and optimization of a novel solar-air source heat pump building energy supply system with energy storage," Applied Energy, Elsevier, vol. 324(C).
    2. Vallati, Andrea & Di Matteo, Miriam & Sundararajan, Mukund & Muzi, Francesco & Fiorini, Costanza Vittoria, 2024. "Development and optimization of an energy saving strategy for social housing applications by water source-heat pump integrating photovoltaic-thermal panels," Energy, Elsevier, vol. 301(C).
    3. Vallati, Andrea & Di Matteo, Miriam & Lo Basso, Gianluigi & Ocłoń, Paweł & Fiorini, Costanza Vittoria, 2024. "Definition of a PVT coupled water source heat pump system through optimization of individual components," Energy, Elsevier, vol. 307(C).
    4. Zhang, Shaoliang & Liu, Shuli & Shen, Yongliang & Shukla, Ashish & Mazhar, Abdur Rehman & Chen, Tingsen, 2024. "Critical review of solar-assisted air source heat pump in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    5. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    6. Emmi, Giuseppe & Baccega, Eleonora & Cesari, Silvia & Mainardi, Elena & Bottarelli, Michele, 2024. "Energy analysis of multi-source heat pump system: A real case study application," Renewable Energy, Elsevier, vol. 221(C).
    7. Cai, Jingyong & Ji, Jie & Wang, Yunyun & Huang, Wenzhu, 2017. "Operation characteristics of a novel dual source multi-functional heat pump system under various working modes," Applied Energy, Elsevier, vol. 194(C), pages 236-246.
    8. Aresti, Lazaros & Alvi, Maria Romana & Cecinato, Francesco & Fan, Tao & Halaj, Elzbieta & Li, Zili & Okhay, Olena & Poulsen, Soren Erbs & Quiroga, Sonia & Suarez, Cristina & Tang, Anh Minh & Valancius, 2024. "Energy geo-structures: A review of their integration with other sources and its limitations," Renewable Energy, Elsevier, vol. 230(C).
    9. Wang, Na & Chu, Shangling & Cheng, Chao & Zhang, Heng & Chen, Haiping & Gao, Dan, 2024. "Performance research and multi-objective optimization of concentrating photovoltaic/thermal coupled air source heat pump heating system," Energy, Elsevier, vol. 296(C).
    10. Zou, Lingeng & Liu, Ye & Yu, Mengqi & Yu, Jianlin, 2023. "A review of solar assisted heat pump technology for drying applications," Energy, Elsevier, vol. 283(C).
    11. Cao, Jingyu & Zheng, Ling & Peng, Jinqing & Wang, Wenjie & Leung, Michael K.H. & Zheng, Zhanying & Hu, Mingke & Wang, Qiliang & Cai, Jingyong & Pei, Gang & Ji, Jie, 2023. "Advances in coupled use of renewable energy sources for performance enhancement of vapour compression heat pump: A systematic review of applications to buildings," Applied Energy, Elsevier, vol. 332(C).
    12. Wang, Xinru & Xia, Liang & Bales, Chris & Zhang, Xingxing & Copertaro, Benedetta & Pan, Song & Wu, Jinshun, 2020. "A systematic review of recent air source heat pump (ASHP) systems assisted by solar thermal, photovoltaic and photovoltaic/thermal sources," Renewable Energy, Elsevier, vol. 146(C), pages 2472-2487.
    13. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    14. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new waste heat district heating system with combined heat and power (CHP) based on ejector heat exchangers and absorption heat pumps," Energy, Elsevier, vol. 69(C), pages 516-524.
    15. Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
    16. Fredrik Skaug Fadnes & Reyhaneh Banihabib & Mohsen Assadi, 2023. "Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster," Energies, MDPI, vol. 16(9), pages 1-33, May.
    17. Jie, Ji & Jingyong, Cai & Wenzhu, Huang & Yan, Feng, 2015. "Experimental study on the performance of solar-assisted multi-functional heat pump based on enthalpy difference lab with solar simulator," Renewable Energy, Elsevier, vol. 75(C), pages 381-388.
    18. Frank Bruno & Martin Belusko & Edward Halawa, 2019. "CO 2 Refrigeration and Heat Pump Systems—A Comprehensive Review," Energies, MDPI, vol. 12(15), pages 1-39, August.
    19. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    20. Francisco Amaral & Alex Santos & Ewerton Calixto & Fernando Pessoa & Delano Santana, 2020. "Exergetic Evaluation of an Ethylene Refrigeration Cycle," Energies, MDPI, vol. 13(14), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123018207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.