IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v331y2023ics0306261922016555.html
   My bibliography  Save this article

Thermo-economic optimization of a multi-source (air/sun/ground) residential heat pump with a water/PCM thermal storage

Author

Listed:
  • PELELLA, Francesco
  • ZSEMBINSZKI, Gabriel
  • VISCITO, Luca
  • William MAURO, Alfonso
  • CABEZA, Luisa F.

Abstract

The main target of this paper is to numerically study a multi-source (air/sun/ground) heat pump with the implementation of a thermal energy storage, using either water or PCM, for residential space heating. The system was modelled considering several sub-models for each of the components (compressor, solar panels, storage tank, heat exchangers etc.). A control strategy has been established to decide which operating mode of the system provides the highest coefficient of performance (COP). A multi-objective optimization through genetic algorithm of several decisional variables of the system was carried out, in different configurations and climate conditions, by considering different scenarios in terms of total investment and energy consumption costs, to optimize seasonal performances and investment cost of the entire system. Results show that solar thermal and solar photovoltaic collectors coupled with water storage tank give higher seasonal energy performance, especially in warmer climates, whereas the exploitation of the ground source can be more advantageous for colder climates. From the optimization analysis, it results that optimal non-dominated solutions characterized by a SCOP increase between 50% and 250% are characterized by higher investment costs between 215% and 730%, depending on the climate conditions. None of the solutions employing a PCM storage tank results economically feasible, due to a slight effect on system performance, and a much higher effect on investment costs. Finally, several cost scenarios in terms of incentives on investment costs and increased energy prices were analysed, for which the employment of scenarios with higher capital investment can be more advantageous in terms of lower total costs.

Suggested Citation

  • PELELLA, Francesco & ZSEMBINSZKI, Gabriel & VISCITO, Luca & William MAURO, Alfonso & CABEZA, Luisa F., 2023. "Thermo-economic optimization of a multi-source (air/sun/ground) residential heat pump with a water/PCM thermal storage," Applied Energy, Elsevier, vol. 331(C).
  • Handle: RePEc:eee:appene:v:331:y:2023:i:c:s0306261922016555
    DOI: 10.1016/j.apenergy.2022.120398
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922016555
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120398?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bamigbetan, O. & Eikevik, T.M. & Nekså, P. & Bantle, M. & Schlemminger, C., 2019. "The development of a hydrocarbon high temperature heat pump for waste heat recovery," Energy, Elsevier, vol. 173(C), pages 1141-1153.
    2. Tervo, Eric & Agbim, Kenechi & DeAngelis, Freddy & Hernandez, Jeffrey & Kim, Hye Kyung & Odukomaiya, Adewale, 2018. "An economic analysis of residential photovoltaic systems with lithium ion battery storage in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1057-1066.
    3. Abbasi Kamazani, Maryam & Aghanajafi, Cyrus, 2022. "Multi-objective optimization and exergoeconomic evaluation of a hybrid geothermal-PVT system integrated with PCM," Energy, Elsevier, vol. 240(C).
    4. Cai, Jingyong & Ji, Jie & Wang, Yunyun & Huang, Wenzhu, 2016. "Numerical simulation and experimental validation of indirect expansion solar-assisted multi-functional heat pump," Renewable Energy, Elsevier, vol. 93(C), pages 280-290.
    5. Ana Cristina Ferreira & Angela Silva & José Carlos Teixeira & Senhorinha Teixeira, 2020. "Multi-Objective Optimization of Solar Thermal Systems Applied to Portuguese Dwellings," Energies, MDPI, vol. 13(24), pages 1-23, December.
    6. Beckman, William A. & Broman, Lars & Fiksel, Alex & Klein, Sanford A. & Lindberg, Eva & Schuler, Mattias & Thornton, Jeff, 1994. "TRNSYS The most complete solar energy system modeling and simulation software," Renewable Energy, Elsevier, vol. 5(1), pages 486-488.
    7. Lee, Minwoo & Lee, Dongchan & Park, Myeong Hyeon & Kang, Yong Tae & Kim, Yongchan, 2022. "Performance improvement of solar-assisted ground-source heat pumps with parallelly connected heat sources in heating-dominated areas," Energy, Elsevier, vol. 240(C).
    8. José M Corberán & Antonio Cazorla-Marín & Javier Marchante-Avellaneda & Carla Montagud, 2018. "Dual source heat pump, a high efficiency and cost-effective alternative for heating, cooling and DHW production," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 13(2), pages 161-176.
    9. Hervás-Blasco, Estefanía & Navarro-Peris, Emilio & Corberán, José Miguel, 2019. "Optimal design and operation of a central domestic hot water heat pump system for a group of dwellings employing low temperature waste heat as a source," Energy, Elsevier, vol. 188(C).
    10. Bulmez, A.M. & Ciofoaia, V. & Năstase, G. & Dragomir, G. & Brezeanu, A.I. & Şerban, A., 2022. "An experimental work on the performance of a solar-assisted ground-coupled heat pump using a horizontal ground heat exchanger," Renewable Energy, Elsevier, vol. 183(C), pages 849-865.
    11. Alicia Crespo & Gabriel Zsembinszki & David Vérez & Emiliano Borri & Cèsar Fernández & Luisa F. Cabeza & Alvaro de Gracia, 2021. "Optimization of Design Variables of a Phase Change Material Storage Tank and Comparison of a 2D Implicit vs. 2D Explicit Model," Energies, MDPI, vol. 14(9), pages 1-15, May.
    12. Banister, Carsen J. & Collins, Michael R., 2015. "Development and performance of a dual tank solar-assisted heat pump system," Applied Energy, Elsevier, vol. 149(C), pages 125-132.
    13. Kutlu, Cagri & Zhang, Yanan & Elmer, Theo & Su, Yuehong & Riffat, Saffa, 2020. "A simulation study on performance improvement of solar assisted heat pump hot water system by novel controllable crystallization of supercooled PCMs," Renewable Energy, Elsevier, vol. 152(C), pages 601-612.
    14. Chow, T.T. & Pei, G. & Fong, K.F. & Lin, Z. & Chan, A.L.S. & He, M., 2010. "Modeling and application of direct-expansion solar-assisted heat pump for water heating in subtropical Hong Kong," Applied Energy, Elsevier, vol. 87(2), pages 643-649, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyu Gao & Ze Li & Jiabang Yu & Jiayi Gao & Xiaohu Yang & Bengt Sundén, 2023. "Thermo-Economic Performance Analysis of Modified Latent Heat Storage System for Residential Heating," Energies, MDPI, vol. 16(19), pages 1-19, September.
    2. Michał Musiał & Lech Lichołai & Dušan Katunský, 2023. "Modern Thermal Energy Storage Systems Dedicated to Autonomous Buildings," Energies, MDPI, vol. 16(11), pages 1-28, May.
    3. Adrian Tantau & Simona Irina Goia (Agoston) & Violeta Mihaela Dincă & Carmen Păunescu & Stere Stamule & Tănase Stamule & Anca Bogdan, 2024. "Exploring the Generation Z Attitude towards Energy Efficiency Improvement and Decarbonization through Heat Pumps: An Empirical Study in Romania," Sustainability, MDPI, vol. 16(3), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Jingyu & Zheng, Ling & Peng, Jinqing & Wang, Wenjie & Leung, Michael K.H. & Zheng, Zhanying & Hu, Mingke & Wang, Qiliang & Cai, Jingyong & Pei, Gang & Ji, Jie, 2023. "Advances in coupled use of renewable energy sources for performance enhancement of vapour compression heat pump: A systematic review of applications to buildings," Applied Energy, Elsevier, vol. 332(C).
    2. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng & Li, Yunhai, 2023. "Mathematical and experimental investigation about the dual-source heat pump integrating low concentrated photovoltaic and finned-tube exchanger," Energy, Elsevier, vol. 263(PE).
    3. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Li, Yunhai & Li, Jing & Zhao, Xudong, 2023. "Annual analysis of the photovoltaic direct-expansion heat pump assisted by double condensing equipment for secondary power generation," Renewable Energy, Elsevier, vol. 209(C), pages 169-183.
    4. Wang, Zhangyuan & Guo, Peng & Zhang, Haijing & Yang, Wansheng & Mei, Sheng, 2017. "Comprehensive review on the development of SAHP for domestic hot water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 871-881.
    5. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part-B: Applications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 124-155.
    6. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong, 2023. "Performance improvement and comparison analysis of the hybrid concentrated dual-source heat pump system regarding proper throttling process," Renewable Energy, Elsevier, vol. 206(C), pages 24-38.
    7. Chen, Liangqi & Yue, Huifeng & Wang, Jiangfeng & Lou, Juwei & Wang, Shunsen & Guo, Yumin & Deng, Bohao & Sun, Lu, 2023. "Thermodynamic analysis of a hybrid energy system coupling solar organic Rankine cycle and ground source heat pump: Exploring heat cascade utilization," Energy, Elsevier, vol. 284(C).
    8. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng, 2022. "Research on the multifunction concentrated solar-air heat pump system," Renewable Energy, Elsevier, vol. 198(C), pages 679-694.
    9. Lazaros Aresti & Paul Christodoulides & Gregoris P. Panayiotou & Georgios Florides, 2020. "The Potential of Utilizing Buildings’ Foundations as Thermal Energy Storage (TES) Units from Solar Plate Collectors," Energies, MDPI, vol. 13(11), pages 1-14, May.
    10. Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
    11. Ruixiaoxiao Zhang & Geoffrey QP Shen & Meng Ni & Johnny Wong, 2020. "The relationship between energy consumption and gross domestic product in Hong Kong (1992–2015): Evidence from sectoral analysis and implications on future energy policy," Energy & Environment, , vol. 31(2), pages 215-236, March.
    12. Lorenzo Gragnaniello & Marcello Iasiello & Gerardo Maria Mauro, 2022. "Multi-Objective Optimization of a Heat Sink for the Thermal Management of a Peltier-Cell-Based Biomedical Refrigerator," Energies, MDPI, vol. 15(19), pages 1-12, October.
    13. Lv, Xiaolong & Yan, Gang & Yu, Jianlin, 2015. "Solar-assisted auto-cascade heat pump cycle with zeotropic mixture R32/R290 for small water heaters," Renewable Energy, Elsevier, vol. 76(C), pages 167-172.
    14. Han, Kedong & Ji, Jie & Cai, Jingyong & Gao, Yuhe & Zhang, Feng & Uddin, Md Muin & Song, Zhiying, 2021. "Experimental and numerical investigation on a novel photovoltaic direct-driven ice storage air-conditioning system," Renewable Energy, Elsevier, vol. 172(C), pages 514-528.
    15. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    16. Ana Picallo-Perez & Jose Maria Sala-Lizarraga, 2021. "Design and Operation of a Polygeneration System in Spanish Climate Buildings under an Exergetic Perspective," Energies, MDPI, vol. 14(22), pages 1-21, November.
    17. Hongyu Zhang & Fei Gan & Guangqin Huang & Chunlong Zhuang & Xiaodong Shen & Shengbo Li & Lei Cheng & Shanshan Hou & Ningge Xu & Zhenqun Sang, 2022. "Study on Heat Storage Performance of Phase Change Reservoir in Underground Protection Engineering," Energies, MDPI, vol. 15(15), pages 1-31, August.
    18. Lee, Seung Joo & Shon, Byung Hoon & Jung, Chung Woo & Kang, Yong Tae, 2018. "A novel type solar assisted heat pump using a low GWP refrigerant (R-1233zd(E)) with the flexible solar collector," Energy, Elsevier, vol. 149(C), pages 386-396.
    19. Luo, Jin & Zhang, Qi & Liang, Changming & Wang, Haiqi & Ma, Xinning, 2023. "An overview of the recent development of the Ground Source Heat Pump (GSHP) system in China," Renewable Energy, Elsevier, vol. 210(C), pages 269-279.
    20. Jorge E. De León-Ruiz & Ignacio Carvajal-Mariscal, 2018. "Mathematical Thermal Modelling of a Direct-Expansion Solar-Assisted Heat Pump Using Multi-Objective Optimization Based on the Energy Demand," Energies, MDPI, vol. 11(7), pages 1-27, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:331:y:2023:i:c:s0306261922016555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.