IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v309y2022ics0306261921016913.html
   My bibliography  Save this article

Active cooling of photovoltaic (PV) cell by acoustic excitation in single-dimpled internal channel

Author

Listed:
  • Choi, Seok Min
  • Kwon, Hyun Goo
  • Kim, Taehyun
  • Moon, Hee Koo
  • Cho, Hyung Hee

Abstract

Solar energy is widely advocated by many countries which is the most popular renewable energy. To get the higher efficiency of the photovoltaic (PV) cell, enhancing cooling performance of the coolant channel is important. In this study, the effect of acoustic excitation was analyzed to enhance the cooling performance of internal channel imprinted with single-dimple for solar PV cell system. Various acoustic-excitation frequencies were compared for the optimized cooling performance of dimple-imprint channel. All experiments were conducted under laminar-flow conditions. The experiments indicated that a Strouhal number of 1.1 corresponding to a similar frequency of the vortex shedding within the dimple cavity was most-effective to enhance cooling performance. By analyzing the local heat/mass transfer distributions, the effect of acoustic excitation can be clearly noticed within the dimple cavity where vorticities formed. In the aft-plateau region, heat/mass transfer gradually decreased and the effect of acoustic excitation was minimal. Overall, the area-averaged heat/mass transfer was enhanced by 68% at St = 1.1. Furthermore, when the acoustic excitation was adopted, the area-averaged heat/mass transfer was enhanced by 26–35% in other frequency cases. It was concluded that an appropriate acoustic-excitation frequency could effectively improve the cooling performance of a single-dimple imprinted channel. In the end, the efficiency of PV cell will be enhanced by adopting the acoustic-excitation with dimple imprint cooling channel.

Suggested Citation

  • Choi, Seok Min & Kwon, Hyun Goo & Kim, Taehyun & Moon, Hee Koo & Cho, Hyung Hee, 2022. "Active cooling of photovoltaic (PV) cell by acoustic excitation in single-dimpled internal channel," Applied Energy, Elsevier, vol. 309(C).
  • Handle: RePEc:eee:appene:v:309:y:2022:i:c:s0306261921016913
    DOI: 10.1016/j.apenergy.2021.118466
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921016913
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118466?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Lei & Du, Wei & Wang, Songtao & Wang, Lei & Sundén, Bengt & Zhang, Xinhong, 2017. "Multi-objective optimization of a solar receiver considering both the dimple/protrusion depth and delta-winglet vortex generators," Energy, Elsevier, vol. 137(C), pages 1-19.
    2. Kim, Hyun-Min & Moon, Mi-Ae & Kim, Kwang-Yong, 2011. "Multi-objective optimization of a cooling channel with staggered elliptic dimples," Energy, Elsevier, vol. 36(5), pages 3419-3428.
    3. Zhao, Bin & Hu, Mingke & Ao, Xianze & Xuan, Qingdong & Pei, Gang, 2020. "Spectrally selective approaches for passive cooling of solar cells: A review," Applied Energy, Elsevier, vol. 262(C).
    4. Wang, Yiping & Li, Shuai & Xie, Xu & Deng, Yadong & Liu, Xun & Su, Chuqi, 2018. "Performance evaluation of an automotive thermoelectric generator with inserted fins or dimpled-surface hot heat exchanger," Applied Energy, Elsevier, vol. 218(C), pages 391-401.
    5. Lotfi, Babak & Sundén, Bengt & Wang, Qiuwang, 2016. "An investigation of the thermo-hydraulic performance of the smooth wavy fin-and-elliptical tube heat exchangers utilizing new type vortex generators," Applied Energy, Elsevier, vol. 162(C), pages 1282-1302.
    6. Hwang, Sang Dong & Kwon, Hyun Goo & Cho, Hyung Hee, 2010. "Local heat transfer and thermal performance on periodically dimple-protrusion patterned walls for compact heat exchangers," Energy, Elsevier, vol. 35(12), pages 5357-5364.
    7. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    8. Saini, R.P. & Verma, Jitendra, 2008. "Heat transfer and friction factor correlations for a duct having dimple-shape artificial roughness for solar air heaters," Energy, Elsevier, vol. 33(8), pages 1277-1287.
    9. Xia, H.H. & Tang, G.H. & Shi, Y. & Tao, W.Q., 2014. "Simulation of heat transfer enhancement by longitudinal vortex generators in dimple heat exchangers," Energy, Elsevier, vol. 74(C), pages 27-36.
    10. Rashidi, Saman & Hormozi, Faramarz & Sundén, Bengt & Mahian, Omid, 2019. "Energy saving in thermal energy systems using dimpled surface technology – A review on mechanisms and applications," Applied Energy, Elsevier, vol. 250(C), pages 1491-1547.
    11. Zhao, X.B. & Tang, G.H. & Ma, X.W. & Jin, Y. & Tao, W.Q., 2014. "Numerical investigation of heat transfer and erosion characteristics for H-type finned oval tube with longitudinal vortex generators and dimples," Applied Energy, Elsevier, vol. 127(C), pages 93-104.
    12. Teo, H.G. & Lee, P.S. & Hawlader, M.N.A., 2012. "An active cooling system for photovoltaic modules," Applied Energy, Elsevier, vol. 90(1), pages 309-315.
    13. Manikandan, G.K. & Iniyan, S. & Goic, Ranko, 2019. "Enhancing the optical and thermal efficiency of a parabolic trough collector – A review," Applied Energy, Elsevier, vol. 235(C), pages 1524-1540.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Choi, Seok Min & Kwon, Hyun Goo & Bae, Hyung Mo & Moon, Hee Koo & Cho, Hyung Hee, 2023. "Effects of staggered dimple array under different flow conditions for enhancing cooling performance of solar systems," Applied Energy, Elsevier, vol. 342(C).
    2. Pirayawaraporn, Alongkorn & Sappaniran, Sahapol & Nooraksa, Sarawin & Prommai, Chanon & Chindakham, Nachaya & Jamroen, Chaowanan, 2023. "Innovative sensorless dual-axis solar tracking system using particle filter," Applied Energy, Elsevier, vol. 338(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choi, Seok Min & Kwon, Hyun Goo & Bae, Hyung Mo & Moon, Hee Koo & Cho, Hyung Hee, 2023. "Effects of staggered dimple array under different flow conditions for enhancing cooling performance of solar systems," Applied Energy, Elsevier, vol. 342(C).
    2. Rashidi, Saman & Hormozi, Faramarz & Sundén, Bengt & Mahian, Omid, 2019. "Energy saving in thermal energy systems using dimpled surface technology – A review on mechanisms and applications," Applied Energy, Elsevier, vol. 250(C), pages 1491-1547.
    3. Luo, Lei & Du, Wei & Wang, Songtao & Wang, Lei & Sundén, Bengt & Zhang, Xinhong, 2017. "Multi-objective optimization of a solar receiver considering both the dimple/protrusion depth and delta-winglet vortex generators," Energy, Elsevier, vol. 137(C), pages 1-19.
    4. Dezan, Daniel J. & Rocha, André D. & Ferreira, Wallace G., 2020. "Parametric sensitivity analysis and optimisation of a solar air heater with multiple rows of longitudinal vortex generators," Applied Energy, Elsevier, vol. 263(C).
    5. Şevik, Seyfi & Özdilli, Özgür & Abuşka, Mesut, 2022. "Experimental investigation of relative roughness height effect in solar air collector with convex dimples," Renewable Energy, Elsevier, vol. 194(C), pages 100-116.
    6. Liu, Jian & Song, Yidan & Xie, Gongnan & Sunden, Bengt, 2015. "Numerical modeling flow and heat transfer in dimpled cooling channels with secondary hemispherical protrusions," Energy, Elsevier, vol. 79(C), pages 1-19.
    7. Zhen Zhao & Liang Xu & Jianmin Gao & Lei Xi & Qicheng Ruan & Yunlong Li, 2022. "Multi-Objective Optimization of Parameters of Channels with Staggered Frustum of a Cone Based on Response Surface Methodology," Energies, MDPI, vol. 15(3), pages 1-19, February.
    8. Chauhan, Ranchan & Kim, Sung Chul, 2019. "Effective efficiency distribution characteristics in protruded/dimpled-arc plate solar thermal collector," Renewable Energy, Elsevier, vol. 138(C), pages 955-963.
    9. Tang, Song-Zhen & Wang, Fei-Long & He, Ya-Ling & Yu, Yang & Tong, Zi-Xiang, 2019. "Parametric optimization of H-type finned tube with longitudinal vortex generators by response surface model and genetic algorithm," Applied Energy, Elsevier, vol. 239(C), pages 908-918.
    10. Li, Xueling & Chang, Huawei & Duan, Chen & Zheng, Yao & Shu, Shuiming, 2019. "Thermal performance analysis of a novel linear cavity receiver for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 237(C), pages 431-439.
    11. Amein, Hamza & Akoush, Bassem M. & El-Bakry, M. Medhat & Abubakr, Mohamed & Hassan, Muhammed A., 2022. "Enhancing the energy utilization in parabolic trough concentrators with cracked heat collection elements using a cost-effective rotation mechanism," Renewable Energy, Elsevier, vol. 181(C), pages 250-266.
    12. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    13. Zhao, Xiaohuan & E, Jiaqiang & Zhang, Zhiqing & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Leng, Erwei & Han, Dandan & Hu, Wenyu, 2020. "A review on heat enhancement in thermal energy conversion and management using Field Synergy Principle," Applied Energy, Elsevier, vol. 257(C).
    14. Lei Chai & Savvas A. Tassou, 2018. "A Review of Airside Heat Transfer Augmentation with Vortex Generators on Heat Transfer Surface," Energies, MDPI, vol. 11(10), pages 1-45, October.
    15. Martin O. L. Hansen & Antonis Charalampous & Jean-Marc Foucaut & Christophe Cuvier & Clara M. Velte, 2019. "Validation of a Model for Estimating the Strength of a Vortex Created from the Bound Circulation of a Vortex Generator," Energies, MDPI, vol. 12(14), pages 1-14, July.
    16. Norouzi, Amir Mohammad & Siavashi, Majid & Ahmadi, Rouhollah & Tahmasbi, Milad, 2021. "Experimental study of a parabolic trough solar collector with rotating absorber tube," Renewable Energy, Elsevier, vol. 168(C), pages 734-749.
    17. Kumar, Rajneesh & Sharma, Akshay & Goel, Varun & Sharma, Rajesh & Sethi, Muneesh & Tyagi, V.V., 2023. "An experimental investigation of new roughness patterns (dimples with alternative protrusions) for the performance enhancement of solar air heater," Renewable Energy, Elsevier, vol. 211(C), pages 964-974.
    18. Kumar, Anil & Kumar, Raj & Maithani, Rajesh & Chauhan, Ranchan & Sethi, Muneesh & Kumari, Anita & Kumar, Sushil & Kumar, Sunil, 2017. "Correlation development for Nusselt number and friction factor of a multiple type V-pattern dimpled obstacles solar air passage," Renewable Energy, Elsevier, vol. 109(C), pages 461-479.
    19. Liu, Peng & Dong, Zhimin & Xiao, Hui & Liu, Zhichun & Liu, Wei, 2021. "Thermal-hydraulic performance analysis of a novel parabolic trough receiver with double tube for solar cascade heat collection," Energy, Elsevier, vol. 219(C).
    20. Xia, H.H. & Tang, G.H. & Shi, Y. & Tao, W.Q., 2014. "Simulation of heat transfer enhancement by longitudinal vortex generators in dimple heat exchangers," Energy, Elsevier, vol. 74(C), pages 27-36.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:309:y:2022:i:c:s0306261921016913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.