IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p1240-d744570.html
   My bibliography  Save this article

Multi-Objective Optimization of Parameters of Channels with Staggered Frustum of a Cone Based on Response Surface Methodology

Author

Listed:
  • Zhen Zhao

    (State Key Laboratory for Manufacturing Systems Engineering, Mechanics Institute, Xi’an Jiaotong University, Xi’an 710049, China)

  • Liang Xu

    (State Key Laboratory for Manufacturing Systems Engineering, Mechanics Institute, Xi’an Jiaotong University, Xi’an 710049, China)

  • Jianmin Gao

    (State Key Laboratory for Manufacturing Systems Engineering, Mechanics Institute, Xi’an Jiaotong University, Xi’an 710049, China)

  • Lei Xi

    (State Key Laboratory for Manufacturing Systems Engineering, Mechanics Institute, Xi’an Jiaotong University, Xi’an 710049, China)

  • Qicheng Ruan

    (State Key Laboratory for Manufacturing Systems Engineering, Mechanics Institute, Xi’an Jiaotong University, Xi’an 710049, China)

  • Yunlong Li

    (State Key Laboratory for Manufacturing Systems Engineering, Mechanics Institute, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

In this study, Response Surface Methodology ( RSM ) and multi-objective genetic algorithm were used to obtain optimum parameters of the channels with frustum of a cone with better flow and heat transfer performance. Central composite face-centered design ( CCF ) was applied to the experimental design of the channel parameters, and on this basis, the response surface models were constructed. The sensitivity of the channel parameters was analyzed by Sobol’s method. The multi-objective optimization of the channel parameters was carried out with the goal of achieving maximum Nusselt number ratio ( Nu/Nu 0 ) and minimum friction coefficient ratio ( f / f 0 ). The results show that the root mean square errors ( RSME ) of the fitted response surface models are less than 0.25 and the determination coefficients ( R 2 ) are greater than 0.93; the models have high accuracy. Sobol’s method can quantitatively analyze the influence of the channel parameters on flow and heat transfer performance of the channels. When the response is Nu/Nu 0 , from high to low, the total sensitivity indexes of the channel parameters are frustum of a cone angle ( α ), Reynolds number ( Re ), spanwise spacing ratio ( Z 2 / D ), and streamwise spacing ratio ( Z 1 / D ). When the response is f / f 0 , the total sensitivity indexes of the channel parameters from high to low are Re , Z 1 / D , α and Z 2 / D . Four optimization channels are selected from the Pareto solution set obtained by multi-objective optimization. Compared with the reference channel, the Nu / Nu 0 of the optimized channels is increased by 21.36% on average, and the f / f 0 is reduced by 9.16% on average.

Suggested Citation

  • Zhen Zhao & Liang Xu & Jianmin Gao & Lei Xi & Qicheng Ruan & Yunlong Li, 2022. "Multi-Objective Optimization of Parameters of Channels with Staggered Frustum of a Cone Based on Response Surface Methodology," Energies, MDPI, vol. 15(3), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1240-:d:744570
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/1240/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/1240/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luo, Lei & Du, Wei & Wang, Songtao & Wang, Lei & Sundén, Bengt & Zhang, Xinhong, 2017. "Multi-objective optimization of a solar receiver considering both the dimple/protrusion depth and delta-winglet vortex generators," Energy, Elsevier, vol. 137(C), pages 1-19.
    2. Kim, Hyun-Min & Moon, Mi-Ae & Kim, Kwang-Yong, 2011. "Multi-objective optimization of a cooling channel with staggered elliptic dimples," Energy, Elsevier, vol. 36(5), pages 3419-3428.
    3. Izadi, Mohsen & Mohebbi, Rasul & Sajjadi, Hasan & Delouei, Amin Amiri, 2019. "LTNE modeling of Magneto-Ferro natural convection inside a porous enclosure exposed to nonuniform magnetic field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    4. Liang Xu & Qicheng Ruan & Qingyun Shen & Lei Xi & Jianmin Gao & Yunlong Li, 2021. "Optimization Design of Lattice Structures in Internal Cooling Channel with Variable Aspect Ratio of Gas Turbine Blade," Energies, MDPI, vol. 14(13), pages 1-27, July.
    5. Liu, Jian & Song, Yidan & Xie, Gongnan & Sunden, Bengt, 2015. "Numerical modeling flow and heat transfer in dimpled cooling channels with secondary hemispherical protrusions," Energy, Elsevier, vol. 79(C), pages 1-19.
    6. Mamourian, Mojtaba & Milani Shirvan, Kamel & Mirzakhanlari, Soroush, 2016. "Two phase simulation and sensitivity analysis of effective parameters on turbulent combined heat transfer and pressure drop in a solar heat exchanger filled with nanofluid by Response Surface Methodol," Energy, Elsevier, vol. 109(C), pages 49-61.
    7. Song, Yang & Wang, Yanhui & Yang, Shaoqiong & Wang, Shuxin & Yang, Ming, 2020. "Sensitivity analysis and parameter optimization of energy consumption for underwater gliders," Energy, Elsevier, vol. 191(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Rajski & Jan Danielewicz, 2023. "Heat Transfer and Heat Recovery Systems," Energies, MDPI, vol. 16(7), pages 1-6, April.
    2. Fábio Antônio do Nascimento Setúbal & Sérgio de Souza Custódio Filho & Newton Sure Soeiro & Alexandre Luiz Amarante Mesquita & Marcus Vinicius Alves Nunes, 2022. "Force Identification from Vibration Data by Response Surface and Random Forest Regression Algorithms," Energies, MDPI, vol. 15(10), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choi, Seok Min & Kwon, Hyun Goo & Kim, Taehyun & Moon, Hee Koo & Cho, Hyung Hee, 2022. "Active cooling of photovoltaic (PV) cell by acoustic excitation in single-dimpled internal channel," Applied Energy, Elsevier, vol. 309(C).
    2. Choi, Seok Min & Kwon, Hyun Goo & Bae, Hyung Mo & Moon, Hee Koo & Cho, Hyung Hee, 2023. "Effects of staggered dimple array under different flow conditions for enhancing cooling performance of solar systems," Applied Energy, Elsevier, vol. 342(C).
    3. Şevik, Seyfi & Özdilli, Özgür & Abuşka, Mesut, 2022. "Experimental investigation of relative roughness height effect in solar air collector with convex dimples," Renewable Energy, Elsevier, vol. 194(C), pages 100-116.
    4. Luo, Lei & Du, Wei & Wang, Songtao & Wang, Lei & Sundén, Bengt & Zhang, Xinhong, 2017. "Multi-objective optimization of a solar receiver considering both the dimple/protrusion depth and delta-winglet vortex generators," Energy, Elsevier, vol. 137(C), pages 1-19.
    5. Hamid, Mohammed O.A. & Zhang, Bo & Yang, Luopeng, 2014. "Application of field synergy principle for optimization fluid flow and convective heat transfer in a tube bundle of a pre-heater," Energy, Elsevier, vol. 76(C), pages 241-253.
    6. Alsarraf, Jalal & Moradikazerouni, Alireza & Shahsavar, Amin & Afrand, Masoud & Salehipour, Hamzeh & Tran, Minh Duc, 2019. "Hydrothermal analysis of turbulent boehmite alumina nanofluid flow with different nanoparticle shapes in a minichannel heat exchanger using two-phase mixture model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 275-288.
    7. Bin Qu & Zilong Chen & Dengke He & Fei Zeng & Youfu Song & Yuqing Ouyang & Lei Luo, 2023. "Influence of Dimple Diameter and Depth on Heat Transfer of Impingement-Cooled Turbine Leading Edge with Cross-Flow and Dimple," Clean Technol., MDPI, vol. 5(3), pages 1-16, August.
    8. Kirttayoth Yeranee & Yu Rao, 2022. "A Review of Recent Investigations on Flow and Heat Transfer Enhancement in Cooling Channels Embedded with Triply Periodic Minimal Surfaces (TPMS)," Energies, MDPI, vol. 15(23), pages 1-29, November.
    9. Rashidi, Saman & Hormozi, Faramarz & Sundén, Bengt & Mahian, Omid, 2019. "Energy saving in thermal energy systems using dimpled surface technology – A review on mechanisms and applications," Applied Energy, Elsevier, vol. 250(C), pages 1491-1547.
    10. Martin O. L. Hansen & Antonis Charalampous & Jean-Marc Foucaut & Christophe Cuvier & Clara M. Velte, 2019. "Validation of a Model for Estimating the Strength of a Vortex Created from the Bound Circulation of a Vortex Generator," Energies, MDPI, vol. 12(14), pages 1-14, July.
    11. Keykhah, Sajjad & Assareh, Ehsanolah & Moltames, Rahim & Izadi, Mohsen & Ali, Hafiz Muhammad, 2020. "Heat transfer and fluid flow for tube included a porous media: Assessment and Multi-Objective Optimization Using Particle Swarm Optimization (PSO) Algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    12. Tgarguifa, Ahmed & Abderafi, Souad & Bounahmidi, Tijani, 2017. "Energetic optimization of Moroccan distillery using simulation and response surface methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 415-425.
    13. Rana, Puneet & Gupta, Gaurav, 2022. "FEM solution to quadratic convective and radiative flow of Ag-MgO/H2O hybrid nanofluid over a rotating cone with Hall current: Optimization using Response Surface Methodology," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 121-140.
    14. Zhao, Zhiqi & Luo, Lei & Qiu, Dandan & Wang, Zhongqi & Sundén, Bengt, 2021. "On the solar air heater thermal enhancement and flow topology using differently shaped ribs combined with delta-winglet vortex generators," Energy, Elsevier, vol. 224(C).
    15. Maakala, Viljami & Järvinen, Mika & Vuorinen, Ville, 2018. "Optimizing the heat transfer performance of the recovery boiler superheaters using simulated annealing, surrogate modeling, and computational fluid dynamics," Energy, Elsevier, vol. 160(C), pages 361-377.
    16. Jung, Hyunjun & Subban, Chinmayee V. & McTigue, Joshua Dominic & Martinez, Jayson J. & Copping, Andrea E. & Osorio, Julian & Liu, Jian & Deng, Z. Daniel, 2022. "Extracting energy from ocean thermal and salinity gradients to power unmanned underwater vehicles: State of the art, current limitations, and future outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    17. Milani Shirvan, Kamel & Mirzakhanlari, Soroush & Mamourian, Mojtaba & Kalogirou, Soteris A., 2017. "Optimization of effective parameters on solar updraft tower to achieve potential maximum power output: A sensitivity analysis and numerical simulation," Applied Energy, Elsevier, vol. 195(C), pages 725-737.
    18. Liu, Jian & Song, Yidan & Xie, Gongnan & Sunden, Bengt, 2015. "Numerical modeling flow and heat transfer in dimpled cooling channels with secondary hemispherical protrusions," Energy, Elsevier, vol. 79(C), pages 1-19.
    19. Tayebi, Tahar & Chamkha, Ali J. & Öztop, Hakan F. & Bouzeroura, Lynda, 2022. "Local thermal non-equilibrium (LTNE) effects on thermal-free convection in a nanofluid-saturated horizontal elliptical non-Darcian porous annulus," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 124-140.
    20. Minea, Alina Adriana, 2017. "Challenges in hybrid nanofluids behavior in turbulent flow: Recent research and numerical comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 426-434.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1240-:d:744570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.