IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v211y2023icp964-974.html
   My bibliography  Save this article

An experimental investigation of new roughness patterns (dimples with alternative protrusions) for the performance enhancement of solar air heater

Author

Listed:
  • Kumar, Rajneesh
  • Sharma, Akshay
  • Goel, Varun
  • Sharma, Rajesh
  • Sethi, Muneesh
  • Tyagi, V.V.

Abstract

Conventional solar air heater (SAH) has poor performance and in this work, an initiative has been taken to improve their overall performance with the help of a combined roughness pattern over the absorber plate. The experimental setup has been designed and fabricated having a rectangular duct with one heat-absorbing side (with roughness). The combination of dimple and protrusion roughness elements are arranged alternatively over the absorber plate for performance improvement of SAH. The precise placement of these roughness elements over the heat-absorbing side has been ensured with relative roughness pitch (RRP; P/e), print diameter to hydraulic diameter (d/D), and relative roughness height (RRH, e/D) which ranged from 10 to 20, 0.025–0.045, and 0.25 to 0.5, respectively. It is discovered with the experimental results that the thermal performance increases along with the pressure loss in the roughened SAH (rSAH). The heat flow increment is comparatively higher at the trailing and the leading edge of the dimple and the protrusion because of flow separation, reattachment, and flow impingement. The thermal performance is the highest while RRP, RRH, d/D are 10, 0.036, and d/D = 0.35, respectively. The proposed roughness pattern has resulted in a 2.1 and 1.95 times higher thermal augmentation and overall performance of SAH over the conventional.

Suggested Citation

  • Kumar, Rajneesh & Sharma, Akshay & Goel, Varun & Sharma, Rajesh & Sethi, Muneesh & Tyagi, V.V., 2023. "An experimental investigation of new roughness patterns (dimples with alternative protrusions) for the performance enhancement of solar air heater," Renewable Energy, Elsevier, vol. 211(C), pages 964-974.
  • Handle: RePEc:eee:renene:v:211:y:2023:i:c:p:964-974
    DOI: 10.1016/j.renene.2023.04.111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123005773
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.04.111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Anil & Kumar, Raj & Maithani, Rajesh & Chauhan, Ranchan & Sethi, Muneesh & Kumari, Anita & Kumar, Sushil & Kumar, Sunil, 2017. "Correlation development for Nusselt number and friction factor of a multiple type V-pattern dimpled obstacles solar air passage," Renewable Energy, Elsevier, vol. 109(C), pages 461-479.
    2. Azadani, Leila N. & Gharouni, Nadiya, 2021. "Multi objective optimization of cylindrical shape roughness parameters in a solar air heater," Renewable Energy, Elsevier, vol. 179(C), pages 1156-1168.
    3. Pedro J. Zarco-Periñán & Irene M. Zarco-Soto & Fco. Javier Zarco-Soto, 2021. "Influence of the Population Density of Cities on Energy Consumption of Their Households," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
    4. Kumar, Rajneesh & Goel, Varun & Kumar, Anoop, 2018. "Investigation of heat transfer augmentation and friction factor in triangular duct solar air heater due to forward facing chamfered rectangular ribs: A CFD based analysis," Renewable Energy, Elsevier, vol. 115(C), pages 824-835.
    5. Hwang, Sang Dong & Kwon, Hyun Goo & Cho, Hyung Hee, 2010. "Local heat transfer and thermal performance on periodically dimple-protrusion patterned walls for compact heat exchangers," Energy, Elsevier, vol. 35(12), pages 5357-5364.
    6. Kumar, Rajneesh & Varun, & Kumar, Anoop, 2016. "Thermal and fluid dynamic characteristics of flow through triangular cross-sectional duct: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 123-140.
    7. Saini, R.P. & Verma, Jitendra, 2008. "Heat transfer and friction factor correlations for a duct having dimple-shape artificial roughness for solar air heaters," Energy, Elsevier, vol. 33(8), pages 1277-1287.
    8. Goel, Varun & Kumar, Rajneesh & Bhattacharyya, Suvanjan & Tyagi, V.V. & Abusorrah, Abdullah M., 2021. "A comprehensive parametric investigation of hemispherical cavities on thermal performance and flow-dynamics in the triangular-duct solar-assisted air-heater," Renewable Energy, Elsevier, vol. 173(C), pages 896-912.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ceylin Şirin & Azim Doğuş Tuncer & Ataollah Khanlari, 2023. "Improving the Performance of Unglazed Solar Air Heating Walls Using Mesh Packing and Nano-Enhanced Absorber Coating: An Energy–Exergy and Enviro-Economic Assessment," Sustainability, MDPI, vol. 15(21), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rashidi, Saman & Hormozi, Faramarz & Sundén, Bengt & Mahian, Omid, 2019. "Energy saving in thermal energy systems using dimpled surface technology – A review on mechanisms and applications," Applied Energy, Elsevier, vol. 250(C), pages 1491-1547.
    2. Anil Singh Yadav & Tabish Alam & Gaurav Gupta & Rajiv Saxena & Naveen Kumar Gupta & K. Viswanath Allamraju & Rahul Kumar & Neeraj Sharma & Abhishek Sharma & Utkarsh Pandey & Yogesh Agrawal, 2022. "A Numerical Investigation of an Artificially Roughened Solar Air Heater," Energies, MDPI, vol. 15(21), pages 1-27, October.
    3. Choi, Seok Min & Kwon, Hyun Goo & Kim, Taehyun & Moon, Hee Koo & Cho, Hyung Hee, 2022. "Active cooling of photovoltaic (PV) cell by acoustic excitation in single-dimpled internal channel," Applied Energy, Elsevier, vol. 309(C).
    4. Karmveer & Naveen Kumar Gupta & Tabish Alam & Raffaello Cozzolino & Gino Bella, 2022. "A Descriptive Review to Access the Most Suitable Rib’s Configuration of Roughness for the Maximum Performance of Solar Air Heater," Energies, MDPI, vol. 15(8), pages 1-46, April.
    5. Kumar, Anil & Kumar, Raj & Maithani, Rajesh & Chauhan, Ranchan & Sethi, Muneesh & Kumari, Anita & Kumar, Sushil & Kumar, Sunil, 2017. "Correlation development for Nusselt number and friction factor of a multiple type V-pattern dimpled obstacles solar air passage," Renewable Energy, Elsevier, vol. 109(C), pages 461-479.
    6. Jin, Dongxu & Quan, Shenglin & Zuo, Jianguo & Xu, Shiming, 2019. "Numerical investigation of heat transfer enhancement in a solar air heater roughened by multiple V-shaped ribs," Renewable Energy, Elsevier, vol. 134(C), pages 78-88.
    7. Kumar, Rajneesh & Goel, Varun, 2021. "Unconventional solar air heater with triangular flow-passage: A CFD based comparative performance assessment of different cross-sectional rib-roughnesses," Renewable Energy, Elsevier, vol. 172(C), pages 1267-1278.
    8. Goel, Varun & Kumar, Rajneesh & Bhattacharyya, Suvanjan & Tyagi, V.V. & Abusorrah, Abdullah M., 2021. "A comprehensive parametric investigation of hemispherical cavities on thermal performance and flow-dynamics in the triangular-duct solar-assisted air-heater," Renewable Energy, Elsevier, vol. 173(C), pages 896-912.
    9. Al-Zahrani, Salman, 2023. "Thermal performance augmentation of solar air heater with curved path," Energy, Elsevier, vol. 284(C).
    10. Nidhul, Kottayat & Kumar, Sachin & Yadav, Ajay Kumar & Anish, S., 2020. "Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis," Energy, Elsevier, vol. 200(C).
    11. Varun Kumar, B. & Manikandan, G. & Rajesh Kanna, P., 2021. "Enhancement of heat transfer in SAH with polygonal and trapezoidal shape of the rib using CFD," Energy, Elsevier, vol. 234(C).
    12. Salman, Mohammad & Park, Myeong Hyeon & Chauhan, Ranchan & Kim, Sung Chul, 2021. "Experimental analysis of single loop solar heat collector with jet impingement over indented dimples," Renewable Energy, Elsevier, vol. 169(C), pages 618-628.
    13. Şevik, Seyfi & Özdilli, Özgür & Abuşka, Mesut, 2022. "Experimental investigation of relative roughness height effect in solar air collector with convex dimples," Renewable Energy, Elsevier, vol. 194(C), pages 100-116.
    14. Luo, Lei & Du, Wei & Wang, Songtao & Wang, Lei & Sundén, Bengt & Zhang, Xinhong, 2017. "Multi-objective optimization of a solar receiver considering both the dimple/protrusion depth and delta-winglet vortex generators," Energy, Elsevier, vol. 137(C), pages 1-19.
    15. Liu, Jian & Song, Yidan & Xie, Gongnan & Sunden, Bengt, 2015. "Numerical modeling flow and heat transfer in dimpled cooling channels with secondary hemispherical protrusions," Energy, Elsevier, vol. 79(C), pages 1-19.
    16. Sivakandhan, C. & Arjunan, T.V. & Matheswaran, M.M., 2020. "Thermohydraulic performance enhancement of a new hybrid duct solar air heater with inclined rib roughness," Renewable Energy, Elsevier, vol. 147(P1), pages 2345-2357.
    17. Tuncer, Azim Doğuş & Khanlari, Ataollah, 2023. "Improving the performance of a triple-flow solar air collector using recyclable aluminum cans as extended heat transfer surfaces: An energetic, exergetic, economic and environmental survey," Energy, Elsevier, vol. 282(C).
    18. Chauhan, Ranchan & Kim, Sung Chul, 2019. "Effective efficiency distribution characteristics in protruded/dimpled-arc plate solar thermal collector," Renewable Energy, Elsevier, vol. 138(C), pages 955-963.
    19. Kumar, Rajneesh & Goel, Varun & Kumar, Anoop, 2018. "Investigation of heat transfer augmentation and friction factor in triangular duct solar air heater due to forward facing chamfered rectangular ribs: A CFD based analysis," Renewable Energy, Elsevier, vol. 115(C), pages 824-835.
    20. Kumar, Vikash, 2021. "Experimental investigation of exergetic efficiency of 3 side concave dimple roughened absorbers," Energy, Elsevier, vol. 215(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:211:y:2023:i:c:p:964-974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.