IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v117y2014icp42-53.html
   My bibliography  Save this article

Feasibility analysis of offshore renewables penetrating local energy systems in remote oceanic areas – A case study of emissions from an electricity system with tidal power in Southern Alaska

Author

Listed:
  • Li, Ye
  • Willman, Lindsay

Abstract

In many remote areas, expensive fossil fuels such as diesel are used to meet local electricity demand. However, their environmental impact is significant. Consequently, some of these areas have started to use hybrid systems that combine renewable energy sources and fossil fuel generation, such as wind-diesel systems, although wind is not feasible in some remote locations and fossil fuels remain the only resource in these areas. Fortunately, offshore renewable energy sources are available in many remote areas close to the ocean. In order to understand the feasibility of using offshore renewables in remote oceanic areas, we recently conducted a systematic study by developing an integrated model. This model includes a supply module, demand module, environmental impact module, and integrating module. Using this model, we mainly study the reduction in emissions resulting from offshore renewable energy penetration in local energy systems. In this article, we present this integrated model and an example study of tidal energy in the Southern Alaska community of Elfin Cove, which relies on diesel fuel for all of its electricity requirements. With 56kW of tidal power penetrating the energy system, we found that almost 12,000 gallons of diesel fuel are displaced per year. This results in an annual emissions reduction of almost 244,000lb CO2 and about 1400lb CO, as well as considerable reductions of PM-10, NOx, and SOx. The newly developed integrated model is expected to be used to analyze other aspects of tidal energy (and offshore renewable energy in general) in remote areas. For example, since the electricity demand in some remote areas varies significantly throughout the year, we recommend that tidal power should be used with a storage system.

Suggested Citation

  • Li, Ye & Willman, Lindsay, 2014. "Feasibility analysis of offshore renewables penetrating local energy systems in remote oceanic areas – A case study of emissions from an electricity system with tidal power in Southern Alaska," Applied Energy, Elsevier, vol. 117(C), pages 42-53.
  • Handle: RePEc:eee:appene:v:117:y:2014:i:c:p:42-53
    DOI: 10.1016/j.apenergy.2013.09.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913007794
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giampietro, Mario & Mayumi, Kozo & Munda, Giuseppe, 2006. "Integrated assessment and energy analysis: Quality assurance in multi-criteria analysis of sustainability," Energy, Elsevier, vol. 31(1), pages 59-86.
    2. Fürsch, Michaela & Hagspiel, Simeon & Jägemann, Cosima & Nagl, Stephan & Lindenberger, Dietmar & Tröster, Eckehard, 2013. "The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050," Applied Energy, Elsevier, vol. 104(C), pages 642-652.
    3. Shrestha, Ram M. & Malla, Sunil & Liyanage, Migara H., 2007. "Scenario-based analyses of energy system development and its environmental implications in Thailand," Energy Policy, Elsevier, vol. 35(6), pages 3179-3193, June.
    4. Ghanadan, Rebecca & Koomey, Jonathan G., 2005. "Using energy scenarios to explore alternative energy pathways in California," Energy Policy, Elsevier, vol. 33(9), pages 1117-1142, June.
    5. Li, Ye & Çalişal, Sander M., 2010. "Numerical analysis of the characteristics of vertical axis tidal current turbines," Renewable Energy, Elsevier, vol. 35(2), pages 435-442.
    6. Li, Ye & Yu, Yi-Hsiang, 2012. "A synthesis of numerical methods for modeling wave energy converter-point absorbers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4352-4364.
    7. Cory, Karlynn S. & Swezey, Blair G., 2007. "Renewable Portfolio Standards in the States: Balancing Goals and Rules," The Electricity Journal, Elsevier, vol. 20(4), pages 21-32, May.
    8. Saheb-Koussa, D. & Haddadi, M. & Belhamel, M., 2009. "Economic and technical study of a hybrid system (wind-photovoltaic-diesel) for rural electrification in Algeria," Applied Energy, Elsevier, vol. 86(7-8), pages 1024-1030, July.
    9. Li, Ye & Calisal, Sander M., 2010. "Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine," Renewable Energy, Elsevier, vol. 35(10), pages 2325-2334.
    10. Suomalainen, K. & Silva, C. & Ferrão, P. & Connors, S., 2013. "Wind power design in isolated energy systems: Impacts of daily wind patterns," Applied Energy, Elsevier, vol. 101(C), pages 533-540.
    11. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jahanshahi, Akram & Kamali, Mohammadreza & Khalaj, Mohammadreza & Khodaparast, Zahra, 2019. "Delphi-based prioritization of economic criteria for development of wave and tidal energy technologies," Energy, Elsevier, vol. 167(C), pages 819-827.
    2. Veigas, M. & López, M. & Iglesias, G., 2014. "Assessing the optimal location for a shoreline wave energy converter," Applied Energy, Elsevier, vol. 132(C), pages 404-411.
    3. Keskin Citiroglu, H. & Okur, A., 2014. "An approach to wave energy converter applications in Eregli on the western Black Sea coast of Turkey," Applied Energy, Elsevier, vol. 135(C), pages 738-747.
    4. Alvarez, Eduardo Alvarez & Rico-Secades, Manuel & Suárez, Daniel Fernández & Gutiérrez-Trashorras, Antonio J. & Fernández-Francos, Joaquín, 2016. "Obtaining energy from tidal microturbines: A practical example in the Nalón River," Applied Energy, Elsevier, vol. 183(C), pages 100-112.
    5. Laura Castro-Santos & Ana Rute Bento & Carlos Guedes Soares, 2020. "The Economic Feasibility of Floating Offshore Wave Energy Farms in the North of Spain," Energies, MDPI, Open Access Journal, vol. 13(4), pages 1-19, February.
    6. Garrett Staines & Gayle Zydlewski & Haley Viehman, 2019. "Changes in Relative Fish Density Around a Deployed Tidal Turbine during on-Water Activities," Sustainability, MDPI, Open Access Journal, vol. 11(22), pages 1-12, November.
    7. González-Gorbeña, Eduardo & Qassim, Raad Y. & Rosman, Paulo C.C., 2016. "Optimisation of hydrokinetic turbine array layouts via surrogate modelling," Renewable Energy, Elsevier, vol. 93(C), pages 45-57.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:117:y:2014:i:c:p:42-53. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.