A data-driven deep sequence-to-sequence long-short memory method along with a gated recurrent neural network for wind power forecasting
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.122109
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sun, Mucun & Feng, Cong & Zhang, Jie, 2019. "Conditional aggregated probabilistic wind power forecasting based on spatio-temporal correlation," Applied Energy, Elsevier, vol. 256(C).
- Sun, Mucun & Feng, Cong & Zhang, Jie, 2020. "Multi-distribution ensemble probabilistic wind power forecasting," Renewable Energy, Elsevier, vol. 148(C), pages 135-149.
- Ahmad, Tanveer & Zhang, Dongdong & Huang, Chao, 2021. "Methodological framework for short-and medium-term energy, solar and wind power forecasting with stochastic-based machine learning approach to monetary and energy policy applications," Energy, Elsevier, vol. 231(C).
- Meka, Rajitha & Alaeddini, Adel & Bhaganagar, Kiran, 2021. "A robust deep learning framework for short-term wind power forecast of a full-scale wind farm using atmospheric variables," Energy, Elsevier, vol. 221(C).
- Hu, Huanling & Wang, Lin & Lv, Sheng-Xiang, 2020. "Forecasting energy consumption and wind power generation using deep echo state network," Renewable Energy, Elsevier, vol. 154(C), pages 598-613.
- Liu, Hui & Chen, Chao, 2019. "Data processing strategies in wind energy forecasting models and applications: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 392-408.
- Antonio Bracale & Pasquale De Falco, 2015. "An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power," Energies, MDPI, vol. 8(9), pages 1-22, September.
- Niu, Zhewen & Yu, Zeyuan & Tang, Wenhu & Wu, Qinghua & Reformat, Marek, 2020. "Wind power forecasting using attention-based gated recurrent unit network," Energy, Elsevier, vol. 196(C).
- Wang, Huai-zhi & Li, Gang-qiang & Wang, Gui-bin & Peng, Jian-chun & Jiang, Hui & Liu, Yi-tao, 2017. "Deep learning based ensemble approach for probabilistic wind power forecasting," Applied Energy, Elsevier, vol. 188(C), pages 56-70.
- Jafarzadeh Ghoushchi, Saeid & Manjili, Sobhan & Mardani, Abbas & Saraji, Mahyar Kamali, 2021. "An extended new approach for forecasting short-term wind power using modified fuzzy wavelet neural network: A case study in wind power plant," Energy, Elsevier, vol. 223(C).
- Tsao, Hao-Han & Leu, Yih-Guang & Chou, Li-Fen, 2021. "A center-of-concentrated-based prediction interval for wind power forecasting," Energy, Elsevier, vol. 237(C).
- Calif, Rudy & Schmitt, François G. & Huang, Yongxiang, 2013. "Multifractal description of wind power fluctuations using arbitrary order Hilbert spectral analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4106-4120.
- Hong, Ying-Yi & Rioflorido, Christian Lian Paulo P., 2019. "A hybrid deep learning-based neural network for 24-h ahead wind power forecasting," Applied Energy, Elsevier, vol. 250(C), pages 530-539.
- Erick López & Carlos Valle & Héctor Allende & Esteban Gil & Henrik Madsen, 2018. "Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory," Energies, MDPI, vol. 11(3), pages 1-22, February.
- Prósper, Miguel A. & Otero-Casal, Carlos & Fernández, Felipe Canoura & Miguez-Macho, Gonzalo, 2019. "Wind power forecasting for a real onshore wind farm on complex terrain using WRF high resolution simulations," Renewable Energy, Elsevier, vol. 135(C), pages 674-686.
- Zhang, Yu & Li, Yanting & Zhang, Guangyao, 2020. "Short-term wind power forecasting approach based on Seq2Seq model using NWP data," Energy, Elsevier, vol. 213(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Yi-Ming & Wang, Hao, 2023. "Multi-head attention-based probabilistic CNN-BiLSTM for day-ahead wind speed forecasting," Energy, Elsevier, vol. 278(PA).
- Meng, Anbo & Zhang, Haitao & Yin, Hao & Xian, Zikang & Chen, Shu & Zhu, Zibin & Zhang, Zheng & Rong, Jiayu & Li, Chen & Wang, Chenen & Wu, Zhenbo & Deng, Weisi & Luo, Jianqiang & Wang, Xiaolin, 2023. "A novel multi-gradient evolutionary deep learning approach for few-shot wind power prediction using time-series GAN," Energy, Elsevier, vol. 283(C).
- Fu, Ke & Li, He & Deng, Pengfei, 2022. "Chaotic time series prediction using DTIGNet based on improved temporal-inception and GRU," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
- Chengcheng Gu & Hua Li, 2022. "Review on Deep Learning Research and Applications in Wind and Wave Energy," Energies, MDPI, vol. 15(4), pages 1-19, February.
- Yuanzhuo Du & Kun Zhang & Qianzhi Shao & Zhe Chen, 2023. "A Short-Term Prediction Model of Wind Power with Outliers: An Integration of Long Short-Term Memory, Ensemble Empirical Mode Decomposition, and Sample Entropy," Sustainability, MDPI, vol. 15(7), pages 1-15, April.
- Gao, Hongchao & Jin, Tai & Feng, Cheng & Li, Chuyi & Chen, Qixin & Kang, Chongqing, 2024. "Review of virtual power plant operations: Resource coordination and multidimensional interaction," Applied Energy, Elsevier, vol. 357(C).
- Xiao, Xun & Mo, Huadong & Zhang, Yinan & Shan, Guangcun, 2022. "Meta-ANN – A dynamic artificial neural network refined by meta-learning for Short-Term Load Forecasting," Energy, Elsevier, vol. 246(C).
- Bashir, Hassan & Sibtain, Muhammad & Hanay, Özge & Azam, Muhammad Imran & Qurat-ul-Ain, & Saleem, Snoober, 2023. "Decomposition and Harris hawks optimized multivariate wind speed forecasting utilizing sequence2sequence-based spatiotemporal attention," Energy, Elsevier, vol. 278(PB).
- Zhong, Lingshu & Wu, Pan & Pei, Mingyang, 2024. "Wind power generation prediction during the COVID-19 epidemic based on novel hybrid deep learning techniques," Renewable Energy, Elsevier, vol. 222(C).
- Wang, Yongli & Wang, Huan & Meng, Xiao & Dong, Huanran & Chen, Xin & Xiang, Hao & Xing, Juntai, 2023. "Considering the dual endogenous-exogenous uncertainty integrated energy multiple load short-term forecast," Energy, Elsevier, vol. 285(C).
- Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2024. "Wind power forecasting: A temporal domain generalization approach incorporating hybrid model and adversarial relationship-based training," Applied Energy, Elsevier, vol. 355(C).
- Elianne Mora & Jenny Cifuentes & Geovanny Marulanda, 2021. "Short-Term Forecasting of Wind Energy: A Comparison of Deep Learning Frameworks," Energies, MDPI, vol. 14(23), pages 1-26, November.
- Liu, Chunming & Wang, Chunling & Yin, Yujun & Yang, Peihong & Jiang, Hui, 2022. "Bi-level dispatch and control strategy based on model predictive control for community integrated energy system considering dynamic response performance," Applied Energy, Elsevier, vol. 310(C).
- Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
- Mirza, Adeel Feroz & Shu, Zhaokun & Usman, Muhammad & Mansoor, Majad & Ling, Qiang, 2024. "Quantile-transformed multi-attention residual framework (QT-MARF) for medium-term PV and wind power prediction," Renewable Energy, Elsevier, vol. 220(C).
- Ye, Lin & Dai, Binhua & Li, Zhuo & Pei, Ming & Zhao, Yongning & Lu, Peng, 2022. "An ensemble method for short-term wind power prediction considering error correction strategy," Applied Energy, Elsevier, vol. 322(C).
- Xi, Xi & Ren, Feifei & Yu, Lean & Yang, Jing, 2023. "Detecting the technology's evolutionary pathway using HiDS-trait-driven tech mining strategy," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
- Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2023. "Wind power forecasting: A hybrid forecasting model and multi-task learning-based framework," Energy, Elsevier, vol. 278(PA).
- Huang, Jing & Qin, Rui, 2024. "Elman neural network considering dynamic time delay estimation for short-term forecasting of offshore wind power," Applied Energy, Elsevier, vol. 358(C).
- Tang, Yugui & Yang, Kuo & Zheng, Yichu & Ma, Li & Zhang, Shujing & Zhang, Zhen, 2024. "Wind power forecasting: A transfer learning approach incorporating temporal convolution and adversarial training," Renewable Energy, Elsevier, vol. 224(C).
- Shen, Weijie & Zeng, Bo & Zeng, Ming, 2023. "Multi-timescale rolling optimization dispatch method for integrated energy system with hybrid energy storage system," Energy, Elsevier, vol. 283(C).
- Yao, Leyi & Liu, Zeyuan & Chang, Weiguang & Yang, Qiang, 2023. "Multi-level model predictive control based multi-objective optimal energy management of integrated energy systems considering uncertainty," Renewable Energy, Elsevier, vol. 212(C), pages 523-537.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
- Al-qaness, Mohammed A.A. & Ewees, Ahmed A. & Fan, Hong & Abualigah, Laith & Elaziz, Mohamed Abd, 2022. "Boosted ANFIS model using augmented marine predator algorithm with mutation operators for wind power forecasting," Applied Energy, Elsevier, vol. 314(C).
- Liu, Xin & Yang, Luoxiao & Zhang, Zijun, 2022. "The attention-assisted ordinary differential equation networks for short-term probabilistic wind power predictions," Applied Energy, Elsevier, vol. 324(C).
- Paweł Piotrowski & Inajara Rutyna & Dariusz Baczyński & Marcin Kopyt, 2022. "Evaluation Metrics for Wind Power Forecasts: A Comprehensive Review and Statistical Analysis of Errors," Energies, MDPI, vol. 15(24), pages 1-38, December.
- Niu, Dongxiao & Sun, Lijie & Yu, Min & Wang, Keke, 2022. "Point and interval forecasting of ultra-short-term wind power based on a data-driven method and hybrid deep learning model," Energy, Elsevier, vol. 254(PA).
- Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2024. "Wind power forecasting: A temporal domain generalization approach incorporating hybrid model and adversarial relationship-based training," Applied Energy, Elsevier, vol. 355(C).
- da Silva, Ramon Gomes & Ribeiro, Matheus Henrique Dal Molin & Moreno, Sinvaldo Rodrigues & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2021. "A novel decomposition-ensemble learning framework for multi-step ahead wind energy forecasting," Energy, Elsevier, vol. 216(C).
- Ma, Zhengjing & Mei, Gang, 2022. "A hybrid attention-based deep learning approach for wind power prediction," Applied Energy, Elsevier, vol. 323(C).
- Cui, Yang & Chen, Zhenghong & He, Yingjie & Xiong, Xiong & Li, Fen, 2023. "An algorithm for forecasting day-ahead wind power via novel long short-term memory and wind power ramp events," Energy, Elsevier, vol. 263(PC).
- Tang, Yugui & Yang, Kuo & Zheng, Yichu & Ma, Li & Zhang, Shujing & Zhang, Zhen, 2024. "Wind power forecasting: A transfer learning approach incorporating temporal convolution and adversarial training," Renewable Energy, Elsevier, vol. 224(C).
- Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
- Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).
- Lv, Sheng-Xiang & Wang, Lin, 2022. "Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization," Applied Energy, Elsevier, vol. 311(C).
- Paweł Piotrowski & Dariusz Baczyński & Marcin Kopyt & Tomasz Gulczyński, 2022. "Advanced Ensemble Methods Using Machine Learning and Deep Learning for One-Day-Ahead Forecasts of Electric Energy Production in Wind Farms," Energies, MDPI, vol. 15(4), pages 1-30, February.
- Xing, Zhikai & He, Yigang, 2023. "Multi-modal multi-step wind power forecasting based on stacking deep learning model," Renewable Energy, Elsevier, vol. 215(C).
- Liu, Guanjun & Wang, Yun & Qin, Hui & Shen, Keyan & Liu, Shuai & Shen, Qin & Qu, Yuhua & Zhou, Jianzhong, 2023. "Probabilistic spatiotemporal forecasting of wind speed based on multi-network deep ensembles method," Renewable Energy, Elsevier, vol. 209(C), pages 231-247.
- Jing Wan & Jiehui Huang & Zhiyuan Liao & Chunquan Li & Peter X. Liu, 2022. "A Multi-View Ensemble Width-Depth Neural Network for Short-Term Wind Power Forecasting," Mathematics, MDPI, vol. 10(11), pages 1-20, May.
- Wang, Shuai & Li, Bin & Li, Guanzheng & Yao, Bin & Wu, Jianzhong, 2021. "Short-term wind power prediction based on multidimensional data cleaning and feature reconfiguration," Applied Energy, Elsevier, vol. 292(C).
- Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2023. "Wind power forecasting: A hybrid forecasting model and multi-task learning-based framework," Energy, Elsevier, vol. 278(PA).
- Lu, Hongfang & Ma, Xin & Huang, Kun & Azimi, Mohammadamin, 2020. "Prediction of offshore wind farm power using a novel two-stage model combining kernel-based nonlinear extension of the Arps decline model with a multi-objective grey wolf optimizer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
More about this item
Keywords
Wind power forecasting; Extended deep STSR-LSTM; Active learning strategy; Medium-long term forecasting; Renewable energy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023574. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.