IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v398y2025ics0306261925011493.html

Multi-dimensional data processing and intelligent forecasting technologies for renewable energy generation

Author

Listed:
  • Liu, Tianhao
  • Shan, Linke
  • Jiang, Meihui
  • Li, Fangning
  • Kong, Fannie
  • Du, Pengcheng
  • Zhu, Hongyu
  • Goh, Hui Hwang
  • Kurniawan, Tonni Agustiono
  • Huang, Chao
  • Zhang, Dongdong

Abstract

As the global demand for renewable energy continues to rise, efficient and intelligent management and forecasting of renewable energy generation have become a critical area of research. This study comprehensively explores the application of artificial intelligence (AI) technologies in multidimensional data processing and intelligent forecasting of renewable energy generation. By examining meteorological and spatiotemporal perspectives, it investigates multidimensional data processing techniques in the renewable energy sector, including data preprocessing, feature extraction, and multi-source data fusion, to address challenges posed by the complexity and variability of renewable energy generation data. Subsequently, the research investigates intelligent forecasting technologies across temporal and spatial scales through two complementary paradigms: deterministic forecasting models and probabilistic forecasting frameworks. The analysis specifically emphasizes how machine learning (ML) and deep learning (DL) architectures enhance deterministic prediction accuracy by effectively handling nonlinear relationships in high-dimensional data, while novel probabilistic approaches leveraging neural networks and ensemble techniques demonstrate superior capabilities in quantifying prediction uncertainty—a critical advancement for operational risk management. Finally, the study summarizes the advantages and limitations of current technologies, discusses future research directions, and emphasizes the importance of enhancing the robustness and real-time performance of intelligent forecasting models. The objectives of this study are twofold: (i) to promote intelligent development in the renewable energy sector, and (ii) to provide new insights into renewable energy generation through data processing and forecasting.

Suggested Citation

  • Liu, Tianhao & Shan, Linke & Jiang, Meihui & Li, Fangning & Kong, Fannie & Du, Pengcheng & Zhu, Hongyu & Goh, Hui Hwang & Kurniawan, Tonni Agustiono & Huang, Chao & Zhang, Dongdong, 2025. "Multi-dimensional data processing and intelligent forecasting technologies for renewable energy generation," Applied Energy, Elsevier, vol. 398(C).
  • Handle: RePEc:eee:appene:v:398:y:2025:i:c:s0306261925011493
    DOI: 10.1016/j.apenergy.2025.126419
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925011493
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126419?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Mucun & Feng, Cong & Zhang, Jie, 2019. "Conditional aggregated probabilistic wind power forecasting based on spatio-temporal correlation," Applied Energy, Elsevier, vol. 256(C).
    2. Ramírez, Andres Felipe & Valencia, Carlos Felipe & Cabrales, Sergio & Ramírez, Carlos G., 2021. "Simulation of photo-voltaic power generation using copula autoregressive models for solar irradiance and air temperature time series," Renewable Energy, Elsevier, vol. 175(C), pages 44-67.
    3. Kumari, Pratima & Toshniwal, Durga, 2021. "Long short term memory–convolutional neural network based deep hybrid approach for solar irradiance forecasting," Applied Energy, Elsevier, vol. 295(C).
    4. Morrison, Rory & Liu, Xiaolei & Lin, Zi, 2022. "Anomaly detection in wind turbine SCADA data for power curve cleaning," Renewable Energy, Elsevier, vol. 184(C), pages 473-486.
    5. Muhammad Shahzad Nazir & Fahad Alturise & Sami Alshmrany & Hafiz. M. J Nazir & Muhammad Bilal & Ahmad N. Abdalla & P. Sanjeevikumar & Ziad M. Ali, 2020. "Wind Generation Forecasting Methods and Proliferation of Artificial Neural Network: A Review of Five Years Research Trend," Sustainability, MDPI, vol. 12(9), pages 1-27, May.
    6. Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2022. "Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Wei Wang & Shiyou Yang & Yankun Yang, 2022. "An Improved Data-Efficiency Algorithm Based on Combining Isolation Forest and Mean Shift for Anomaly Data Filtering in Wind Power Curve," Energies, MDPI, vol. 15(13), pages 1-12, July.
    8. Han, Shuang & Qiao, Yanhui & Yan, Ping & Yan, Jie & Liu, Yongqian & Li, Li, 2020. "Wind turbine power curve modeling based on interval extreme probability density for the integration of renewable energies and electric vehicles," Renewable Energy, Elsevier, vol. 157(C), pages 190-203.
    9. Lauret, Philippe & Boland, John & Ridley, Barbara, 2013. "Bayesian statistical analysis applied to solar radiation modelling," Renewable Energy, Elsevier, vol. 49(C), pages 124-127.
    10. Liu, Zhi-Feng & Liu, You-Yuan & Chen, Xiao-Rui & Zhang, Shu-Rui & Luo, Xing-Fu & Li, Ling-Ling & Yang, Yi-Zhou & You, Guo-Dong, 2024. "A novel deep learning-based evolutionary model with potential attention and memory decay-enhancement strategy for short-term wind power point-interval forecasting," Applied Energy, Elsevier, vol. 360(C).
    11. Sun, Mucun & Feng, Cong & Zhang, Jie, 2020. "Multi-distribution ensemble probabilistic wind power forecasting," Renewable Energy, Elsevier, vol. 148(C), pages 135-149.
    12. Li, Xuyang & Qiu, Yingning & Feng, Yanhui & Wang, Zheng, 2021. "Wind turbine power prediction considering wake effects with dual laser beam LiDAR measured yaw misalignment," Applied Energy, Elsevier, vol. 299(C).
    13. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    14. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
    15. Lu, Peng & Ye, Lin & Pei, Ming & Zhao, Yongning & Dai, Binhua & Li, Zhuo, 2022. "Short-term wind power forecasting based on meteorological feature extraction and optimization strategy," Renewable Energy, Elsevier, vol. 184(C), pages 642-661.
    16. Ahmad, Tanveer & Madonski, Rafal & Zhang, Dongdong & Huang, Chao & Mujeeb, Asad, 2022. "Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    17. Dong, Mi & Sun, Mingren & Song, Dongran & Huang, Liansheng & Yang, Jian & Joo, Young Hoon, 2022. "Real-time detection of wind power abnormal data based on semi-supervised learning Robust Random Cut Forest," Energy, Elsevier, vol. 257(C).
    18. Ahmad, Tanveer & Chen, Huanxin, 2018. "Potential of three variant machine-learning models for forecasting district level medium-term and long-term energy demand in smart grid environment," Energy, Elsevier, vol. 160(C), pages 1008-1020.
    19. Lei, Ma & Shiyan, Luan & Chuanwen, Jiang & Hongling, Liu & Yan, Zhang, 2009. "A review on the forecasting of wind speed and generated power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 915-920, May.
    20. Al-Dahidi, Sameer & Alrbai, Mohammad & Rinchi, Bilal & Alahmer, Hussein & Al-Ghussain, Loiy & Hayajneh, Hassan S. & Alahmer, Ali, 2025. "Techno-economic implications and cost of forecasting errors in solar PV power production using optimized deep learning models," Energy, Elsevier, vol. 323(C).
    21. Wang, Keqi & Wang, Lijie & Meng, Qiang & Yang, Chao & Lin, Yangshu & Zhu, Junye & Zhao, Zhongyang & Zhou, Can & Zheng, Chenghang & Gao, Xiang, 2025. "Accurate photovoltaic power prediction via temperature correction with physics-informed neural networks," Energy, Elsevier, vol. 328(C).
    22. Hua, Haochen & Qin, Yuchao & Hao, Chuantong & Cao, Junwei, 2019. "Optimal energy management strategies for energy Internet via deep reinforcement learning approach," Applied Energy, Elsevier, vol. 239(C), pages 598-609.
    23. Shrivastava, Nitin Anand & Lohia, Kunal & Panigrahi, Bijaya Ketan, 2016. "A multiobjective framework for wind speed prediction interval forecasts," Renewable Energy, Elsevier, vol. 87(P2), pages 903-910.
    24. Bommidi, Bala Saibabu & Teeparthi, Kiran & Kosana, Vishalteja, 2023. "Hybrid wind speed forecasting using ICEEMDAN and transformer model with novel loss function," Energy, Elsevier, vol. 265(C).
    25. Bedi, Jatin & Toshniwal, Durga, 2019. "Deep learning framework to forecast electricity demand," Applied Energy, Elsevier, vol. 238(C), pages 1312-1326.
    26. Yang, Mao & Guo, Yunfeng & Huang, Yutong, 2023. "Wind power ultra-short-term prediction method based on NWP wind speed correction and double clustering division of transitional weather process," Energy, Elsevier, vol. 282(C).
    27. Ahmad, Tanveer & Zhang, Dongdong & Huang, Chao, 2021. "Methodological framework for short-and medium-term energy, solar and wind power forecasting with stochastic-based machine learning approach to monetary and energy policy applications," Energy, Elsevier, vol. 231(C).
    28. Nie, Ying & Liang, Ni & Wang, Jianzhou, 2021. "Ultra-short-term wind-speed bi-forecasting system via artificial intelligence and a double-forecasting scheme," Applied Energy, Elsevier, vol. 301(C).
    29. Shafiullah, G.M. & M.T. Oo, Amanullah & Shawkat Ali, A.B.M. & Wolfs, Peter, 2013. "Potential challenges of integrating large-scale wind energy into the power grid–A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 306-321.
    30. Tascikaraoglu, Akin & Sanandaji, Borhan M. & Poolla, Kameshwar & Varaiya, Pravin, 2016. "Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using Wavelet Transform," Applied Energy, Elsevier, vol. 165(C), pages 735-747.
    31. Miao, Haozeyu & Dong, Danhong & Huang, Gang & Hu, Kaiming & Tian, Qun & Gong, Yuanfa, 2020. "Evaluation of Northern Hemisphere surface wind speed and wind power density in multiple reanalysis datasets," Energy, Elsevier, vol. 200(C).
    32. Meka, Rajitha & Alaeddini, Adel & Bhaganagar, Kiran, 2021. "A robust deep learning framework for short-term wind power forecast of a full-scale wind farm using atmospheric variables," Energy, Elsevier, vol. 221(C).
    33. Pan, Yue & Zhang, Limao, 2020. "Data-driven estimation of building energy consumption with multi-source heterogeneous data," Applied Energy, Elsevier, vol. 268(C).
    34. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    35. Sadaei, Hossein Javedani & de Lima e Silva, Petrônio Cândido & Guimarães, Frederico Gadelha & Lee, Muhammad Hisyam, 2019. "Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series," Energy, Elsevier, vol. 175(C), pages 365-377.
    36. Ramirez-Rosado, Ignacio J. & Fernandez-Jimenez, L. Alfredo & Monteiro, Cláudio & Sousa, João & Bessa, Ricardo, 2009. "Comparison of two new short-term wind-power forecasting systems," Renewable Energy, Elsevier, vol. 34(7), pages 1848-1854.
    37. Cui, Yang & Chen, Zhenghong & He, Yingjie & Xiong, Xiong & Li, Fen, 2023. "An algorithm for forecasting day-ahead wind power via novel long short-term memory and wind power ramp events," Energy, Elsevier, vol. 263(PC).
    38. Dai, Xiaoran & Liu, Guo-Ping & Hu, Wenshan, 2023. "An online-learning-enabled self-attention-based model for ultra-short-term wind power forecasting," Energy, Elsevier, vol. 272(C).
    39. Karijadi, Irene & Chou, Shuo-Yan & Dewabharata, Anindhita, 2023. "Wind power forecasting based on hybrid CEEMDAN-EWT deep learning method," Renewable Energy, Elsevier, vol. 218(C).
    40. Kumar, Yogesh & Ringenberg, Jordan & Depuru, Soma Shekara & Devabhaktuni, Vijay K. & Lee, Jin Woo & Nikolaidis, Efstratios & Andersen, Brett & Afjeh, Abdollah, 2016. "Wind energy: Trends and enabling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 209-224.
    41. Lv, Sheng-Xiang & Wang, Lin, 2023. "Multivariate wind speed forecasting based on multi-objective feature selection approach and hybrid deep learning model," Energy, Elsevier, vol. 263(PE).
    42. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "Models for monitoring wind farm power," Renewable Energy, Elsevier, vol. 34(3), pages 583-590.
    43. Sinsel, Simon R. & Riemke, Rhea L. & Hoffmann, Volker H., 2020. "Challenges and solution technologies for the integration of variable renewable energy sources—a review," Renewable Energy, Elsevier, vol. 145(C), pages 2271-2285.
    44. Jufri, Fauzan Hanif & Oh, Seongmun & Jung, Jaesung, 2019. "Development of Photovoltaic abnormal condition detection system using combined regression and Support Vector Machine," Energy, Elsevier, vol. 176(C), pages 457-467.
    45. Antonio Bracale & Pasquale De Falco, 2015. "An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power," Energies, MDPI, vol. 8(9), pages 1-22, September.
    46. Zang, Haixiang & Liu, Ling & Sun, Li & Cheng, Lilin & Wei, Zhinong & Sun, Guoqiang, 2020. "Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations," Renewable Energy, Elsevier, vol. 160(C), pages 26-41.
    47. González-Sopeña, J.M. & Pakrashi, V. & Ghosh, B., 2021. "An overview of performance evaluation metrics for short-term statistical wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    48. Gu, Bo & Zhang, Tianren & Meng, Hang & Zhang, Jinhua, 2021. "Short-term forecasting and uncertainty analysis of wind power based on long short-term memory, cloud model and non-parametric kernel density estimation," Renewable Energy, Elsevier, vol. 164(C), pages 687-708.
    49. Xu, Yuanyuan & Yang, Genke & Luo, Jiliang & He, Jianan & Sun, Haixin, 2022. "A multi-location short-term wind speed prediction model based on spatiotemporal joint learning," Renewable Energy, Elsevier, vol. 183(C), pages 148-159.
    50. Zhe Dong & Yiyang Zhao & Anqi Wang & Meng Zhou, 2025. "Wind-Mambaformer: Ultra-Short-Term Wind Turbine Power Forecasting Based on Advanced Transformer and Mamba Models," Energies, MDPI, vol. 18(5), pages 1-22, February.
    51. Alfredo Nespoli & Emanuele Ogliari & Sonia Leva & Alessandro Massi Pavan & Adel Mellit & Vanni Lughi & Alberto Dolara, 2019. "Day-Ahead Photovoltaic Forecasting: A Comparison of the Most Effective Techniques," Energies, MDPI, vol. 12(9), pages 1-15, April.
    52. Yu, Guangzheng & Liu, Chengquan & Tang, Bo & Chen, Rusi & Lu, Liu & Cui, Chaoyue & Hu, Yue & Shen, Lingxu & Muyeen, S.M., 2022. "Short term wind power prediction for regional wind farms based on spatial-temporal characteristic distribution," Renewable Energy, Elsevier, vol. 199(C), pages 599-612.
    53. Wang, Jian & Yang, Zhongshan, 2021. "Ultra-short-term wind speed forecasting using an optimized artificial intelligence algorithm," Renewable Energy, Elsevier, vol. 171(C), pages 1418-1435.
    54. Zou, Peng & Chen, Qixin & Yu, Yang & Xia, Qing & Kang, Chongqing, 2017. "Electricity markets evolution with the changing generation mix: An empirical analysis based on China 2050 High Renewable Energy Penetration Roadmap," Applied Energy, Elsevier, vol. 185(P1), pages 56-67.
    55. Bingchun Liu & Shijie Zhao & Xiaogang Yu & Lei Zhang & Qingshan Wang, 2020. "A Novel Deep Learning Approach for Wind Power Forecasting Based on WD-LSTM Model," Energies, MDPI, vol. 13(18), pages 1-17, September.
    56. Kavasseri, Rajesh G. & Seetharaman, Krithika, 2009. "Day-ahead wind speed forecasting using f-ARIMA models," Renewable Energy, Elsevier, vol. 34(5), pages 1388-1393.
    57. Liu, Hui & Tian, Hong-Qi & Chen, Chao & Li, Yan-fei, 2010. "A hybrid statistical method to predict wind speed and wind power," Renewable Energy, Elsevier, vol. 35(8), pages 1857-1861.
    58. Yu, Ruiguo & Liu, Zhiqiang & Li, Xuewei & Lu, Wenhuan & Ma, Degang & Yu, Mei & Wang, Jianrong & Li, Bin, 2019. "Scene learning: Deep convolutional networks for wind power prediction by embedding turbines into grid space," Applied Energy, Elsevier, vol. 238(C), pages 249-257.
    59. Yan, Jie & Liu, Yongqian & Han, Shuang & Wang, Yimei & Feng, Shuanglei, 2015. "Reviews on uncertainty analysis of wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1322-1330.
    60. Pang, Yanhua & He, Qun & Jiang, Guoqian & Xie, Ping, 2020. "Spatio-temporal fusion neural network for multi-class fault diagnosis of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 161(C), pages 510-524.
    61. Qian, Zheng & Pei, Yan & Zareipour, Hamidreza & Chen, Niya, 2019. "A review and discussion of decomposition-based hybrid models for wind energy forecasting applications," Applied Energy, Elsevier, vol. 235(C), pages 939-953.
    62. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
    63. Tsai, Sang-Bing & Xue, Youzhi & Zhang, Jianyu & Chen, Quan & Liu, Yubin & Zhou, Jie & Dong, Weiwei, 2017. "Models for forecasting growth trends in renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1169-1178.
    64. Ding, Yuanping & Dang, Yaoguo, 2023. "Forecasting renewable energy generation with a novel flexible nonlinear multivariable discrete grey prediction model," Energy, Elsevier, vol. 277(C).
    65. Singh, G.K., 2013. "Solar power generation by PV (photovoltaic) technology: A review," Energy, Elsevier, vol. 53(C), pages 1-13.
    66. Chen, Hang & Wei, Shanbi & Yang, Wei & Liu, Shanchao, 2023. "Input wind speed forecasting for wind turbines based on spatio-temporal correlation," Renewable Energy, Elsevier, vol. 216(C).
    67. Hu, Yang & Xi, Yunhua & Pan, Chenyang & Li, Gengda & Chen, Baowei, 2020. "Daily condition monitoring of grid-connected wind turbine via high-fidelity power curve and its comprehensive rating," Renewable Energy, Elsevier, vol. 146(C), pages 2095-2111.
    68. Huang, Yu & Zhang, Bingzhe & Pang, Huizhen & Wang, Biao & Lee, Kwang Y. & Xie, Jiale & Jin, Yupeng, 2022. "Spatio-temporal wind speed prediction based on Clayton Copula function with deep learning fusion," Renewable Energy, Elsevier, vol. 192(C), pages 526-536.
    69. Yu, Jie & Chen, Kuilin & Mori, Junichi & Rashid, Mudassir M., 2013. "A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction," Energy, Elsevier, vol. 61(C), pages 673-686.
    70. Wang, Jujie & Li, Yaning, 2018. "Multi-step ahead wind speed prediction based on optimal feature extraction, long short term memory neural network and error correction strategy," Applied Energy, Elsevier, vol. 230(C), pages 429-443.
    71. Lydia, M. & Kumar, S. Suresh & Selvakumar, A. Immanuel & Prem Kumar, G. Edwin, 2014. "A comprehensive review on wind turbine power curve modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 452-460.
    72. Valsaraj, P. & Thumba, Drisya Alex & Asokan, K. & Kumar, K. Satheesh, 2020. "Symbolic regression-based improved method for wind speed extrapolation from lower to higher altitudes for wind energy applications," Applied Energy, Elsevier, vol. 260(C).
    73. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    74. Erdem, Ergin & Shi, Jing, 2011. "ARMA based approaches for forecasting the tuple of wind speed and direction," Applied Energy, Elsevier, vol. 88(4), pages 1405-1414, April.
    75. Kumar, Rakesh & Raahemifar, Kaamran & Fung, Alan S., 2018. "A critical review of vertical axis wind turbines for urban applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 281-291.
    76. Wang, Xiaoyang & Sun, Yunlin & Luo, Duo & Peng, Jinqing, 2022. "Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification," Energy, Elsevier, vol. 240(C).
    77. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "On-line monitoring of power curves," Renewable Energy, Elsevier, vol. 34(6), pages 1487-1493.
    78. Zheng, Xidong & Bai, Feifei & Zhuang, Zhiyuan & Chen, Zixing & Jin, Tao, 2023. "A new demand response management strategy considering renewable energy prediction and filtering technology," Renewable Energy, Elsevier, vol. 211(C), pages 656-668.
    79. Qiaomu Zhu & Jinfu Chen & Lin Zhu & Xianzhong Duan & Yilu Liu, 2018. "Wind Speed Prediction with Spatio–Temporal Correlation: A Deep Learning Approach," Energies, MDPI, vol. 11(4), pages 1-18, March.
    80. Erasmo Cadenas & Wilfrido Rivera & Rafael Campos-Amezcua & Christopher Heard, 2016. "Wind Speed Prediction Using a Univariate ARIMA Model and a Multivariate NARX Model," Energies, MDPI, vol. 9(2), pages 1-15, February.
    81. Shi, Jinhao & Wang, Bo & Luo, Kaiyi & Wu, Yifei & Zhou, Min & Watada, Junzo, 2023. "Ultra-short-term wind power interval prediction based on multi-task learning and generative critic networks," Energy, Elsevier, vol. 272(C).
    82. Xu, Qifa & Fan, Zhenhua & Jia, Weiyin & Jiang, Cuixia, 2020. "Fault detection of wind turbines via multivariate process monitoring based on vine copulas," Renewable Energy, Elsevier, vol. 161(C), pages 939-955.
    83. Fuss, Sabine & Johansson, Daniel J.A. & Szolgayova, Jana & Obersteiner, Michael, 2009. "Impact of climate policy uncertainty on the adoption of electricity generating technologies," Energy Policy, Elsevier, vol. 37(2), pages 733-743, February.
    84. Zheng, Ling & Zhou, Bin & Or, Siu Wing & Cao, Yijia & Wang, Huaizhi & Li, Yong & Chan, Ka Wing, 2021. "Spatio-temporal wind speed prediction of multiple wind farms using capsule network," Renewable Energy, Elsevier, vol. 175(C), pages 718-730.
    85. Song, Zhe & Zhang, Zijun & Jiang, Yu & Zhu, Jin, 2018. "Wind turbine health state monitoring based on a Bayesian data-driven approach," Renewable Energy, Elsevier, vol. 125(C), pages 172-181.
    86. Bakdi, Azzeddine & Kouadri, Abdelmalek & Mekhilef, Saad, 2019. "A data-driven algorithm for online detection of component and system faults in modern wind turbines at different operating zones," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 546-555.
    87. Foley, Aoife M. & Leahy, Paul G. & Marvuglia, Antonino & McKeogh, Eamon J., 2012. "Current methods and advances in forecasting of wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 1-8.
    88. Mellit, A. & Pavan, A. Massi & Lughi, V., 2021. "Deep learning neural networks for short-term photovoltaic power forecasting," Renewable Energy, Elsevier, vol. 172(C), pages 276-288.
    89. Shengli Liao & Xudong Tian & Benxi Liu & Tian Liu & Huaying Su & Binbin Zhou, 2022. "Short-Term Wind Power Prediction Based on LightGBM and Meteorological Reanalysis," Energies, MDPI, vol. 15(17), pages 1-21, August.
    90. Huang, Songtao & Zhou, Qingguo & Shen, Jun & Zhou, Heng & Yong, Binbin, 2024. "Multistage spatio-temporal attention network based on NODE for short-term PV power forecasting," Energy, Elsevier, vol. 290(C).
    91. Bilal Khalid & Mariusz Urbański & Monika Kowalska-Sudyka & Elżbieta Wysłocka & Barbara Piontek, 2021. "Evaluating Consumers’ Adoption of Renewable Energy," Energies, MDPI, vol. 14(21), pages 1-15, November.
    92. Zhang, Dongdong & Chen, Baian & Zhu, Hongyu & Goh, Hui Hwang & Dong, Yunxuan & Wu, Thomas, 2023. "Short-term wind power prediction based on two-layer decomposition and BiTCN-BiLSTM-attention model," Energy, Elsevier, vol. 285(C).
    93. Tawn, R. & Browell, J., 2022. "A review of very short-term wind and solar power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    94. Ouyang, Tinghui & Kusiak, Andrew & He, Yusen, 2017. "Modeling wind-turbine power curve: A data partitioning and mining approach," Renewable Energy, Elsevier, vol. 102(PA), pages 1-8.
    95. Yin, Wansi & Han, Yutong & Zhou, Hai & Ma, Ming & Li, Li & Zhu, Honglu, 2020. "A novel non-iterative correction method for short-term photovoltaic power forecasting," Renewable Energy, Elsevier, vol. 159(C), pages 23-32.
    96. Ren, Ye & Suganthan, P.N. & Srikanth, N., 2015. "Ensemble methods for wind and solar power forecasting—A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 82-91.
    97. Luo, Xing & Zhang, Dongxiao & Zhu, Xu, 2021. "Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge," Energy, Elsevier, vol. 225(C).
    98. Liu, Lei & Liu, Jicheng & Ye, Yu & Liu, Hui & Chen, Kun & Li, Dong & Dong, Xue & Sun, Mingzhai, 2023. "Ultra-short-term wind power forecasting based on deep Bayesian model with uncertainty," Renewable Energy, Elsevier, vol. 205(C), pages 598-607.
    99. Dong, Qingli & Sun, Yuhuan & Li, Peizhi, 2017. "A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting: A case study of wind farms in China," Renewable Energy, Elsevier, vol. 102(PA), pages 241-257.
    100. Nielson, Jordan & Bhaganagar, Kiran & Meka, Rajitha & Alaeddini, Adel, 2020. "Using atmospheric inputs for Artificial Neural Networks to improve wind turbine power prediction," Energy, Elsevier, vol. 190(C).
    101. Maldonado-Salguero, Patricia & Bueso-Sánchez, María Carmen & Molina-García, Ángel & Sánchez-Lozano, Juan Miguel, 2022. "Spatio-temporal dynamic clustering modeling for solar irradiance resource assessment," Renewable Energy, Elsevier, vol. 200(C), pages 344-359.
    102. Severiano, Carlos A. & Silva, Petrônio Cândido de Lima e & Weiss Cohen, Miri & Guimarães, Frederico Gadelha, 2021. "Evolving fuzzy time series for spatio-temporal forecasting in renewable energy systems," Renewable Energy, Elsevier, vol. 171(C), pages 764-783.
    103. Li, Yanting & Peng, Xinghao & Zhang, Yu, 2022. "Forecasting methods for wind power scenarios of multiple wind farms based on spatio-temporal dependency structure," Renewable Energy, Elsevier, vol. 201(P1), pages 950-960.
    104. Tang, Rui & Dore, Jonathon & Ma, Jin & Leong, Philip H.W., 2021. "Interpolating high granularity solar generation and load consumption data using super resolution generative adversarial network," Applied Energy, Elsevier, vol. 299(C).
    105. Li, Shaopeng & Li, Xin & Jiang, Yan & Yang, Qingshan & Lin, Min & Peng, Liuliu & Yu, Jianhan, 2025. "A novel frequency-domain physics-informed neural network for accurate prediction of 3D spatio-temporal wind fields in wind turbine applications," Applied Energy, Elsevier, vol. 386(C).
    106. Khan, Waqas & Walker, Shalika & Zeiler, Wim, 2022. "Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach," Energy, Elsevier, vol. 240(C).
    107. Yoldaş, Yeliz & Önen, Ahmet & Muyeen, S.M. & Vasilakos, Athanasios V. & Alan, İrfan, 2017. "Enhancing smart grid with microgrids: Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 205-214.
    108. Tang, Yaochi & Chang, Yunchi & Li, Kuohao, 2023. "Applications of K-nearest neighbor algorithm in intelligent diagnosis of wind turbine blades damage," Renewable Energy, Elsevier, vol. 212(C), pages 855-864.
    109. Gong, Jianqiang & Qu, Zhiguo & Zhu, Zhenle & Xu, Hongtao, 2025. "Parallel TimesNet-BiLSTM model for ultra-short-term photovoltaic power forecasting using STL decomposition and auto-tuning," Energy, Elsevier, vol. 320(C).
    110. Wang, Gang & Jia, Ru & Liu, Jinhai & Zhang, Huaguang, 2020. "A hybrid wind power forecasting approach based on Bayesian model averaging and ensemble learning," Renewable Energy, Elsevier, vol. 145(C), pages 2426-2434.
    111. Fan, Huijing & Zhen, Zhao & Liu, Nian & Sun, Yiqian & Chang, Xiqiang & Li, Yu & Wang, Fei & Mi, Zengqiang, 2023. "Fluctuation pattern recognition based ultra-short-term wind power probabilistic forecasting method," Energy, Elsevier, vol. 266(C).
    112. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Li, Zhuo, 2021. "Feature extraction of meteorological factors for wind power prediction based on variable weight combined method," Renewable Energy, Elsevier, vol. 179(C), pages 1925-1939.
    113. Oliveira Santos, Victor & Costa Rocha, Paulo Alexandre & Scott, John & Van Griensven Thé, Jesse & Gharabaghi, Bahram, 2023. "Spatiotemporal analysis of bidimensional wind speed forecasting: Development and thorough assessment of LSTM and ensemble graph neural networks on the Dutch database," Energy, Elsevier, vol. 278(PA).
    114. Han, Shuang & Qiao, Yan-hui & Yan, Jie & Liu, Yong-qian & Li, Li & Wang, Zheng, 2019. "Mid-to-long term wind and photovoltaic power generation prediction based on copula function and long short term memory network," Applied Energy, Elsevier, vol. 239(C), pages 181-191.
    115. Ghorani, Mohammad Mahdi & Karimi, Behrooz & Mirghavami, Seyed Mohammad & Saboohi, Zoheir, 2023. "A numerical study on the feasibility of electricity production using an optimized wind delivery system (Invelox) integrated with a Horizontal axis wind turbine (HAWT)," Energy, Elsevier, vol. 268(C).
    116. Fang, Xin & Hodge, Bri-Mathias & Du, Ershun & Zhang, Ning & Li, Fangxing, 2018. "Modelling wind power spatial-temporal correlation in multi-interval optimal power flow: A sparse correlation matrix approach," Applied Energy, Elsevier, vol. 230(C), pages 531-539.
    117. Li, Yifan & Liu, Gang & Cao, Yisheng & Chen, Jiawei & Gang, Xiao & Tang, Jianchao, 2025. "WNPS-LSTM-Informer: A Hybrid Stacking model for medium-term photovoltaic power forecasting with ranked feature selection," Renewable Energy, Elsevier, vol. 244(C).
    118. Guo, Nai-Zhi & Shi, Ke-Zhong & Li, Bo & Qi, Liang-Wen & Wu, Hong-Hui & Zhang, Zi-Liang & Xu, Jian-Zhong, 2022. "A physics-inspired neural network model for short-term wind power prediction considering wake effects," Energy, Elsevier, vol. 261(PA).
    119. Tsao, Hao-Han & Leu, Yih-Guang & Chou, Li-Fen, 2021. "A center-of-concentrated-based prediction interval for wind power forecasting," Energy, Elsevier, vol. 237(C).
    120. Gao, Fang & Xu, Zidong & Yin, Linfei, 2024. "Bayesian deep neural networks for spatio-temporal probabilistic optimal power flow with multi-source renewable energy," Applied Energy, Elsevier, vol. 353(PA).
    121. Peng, Cheng & Zhang, Yiqin & Zhang, Bowen & Song, Dan & Lyu, Yi & Tsoi, AhChung, 2023. "A novel ultra-short-term wind power prediction method based on XA mechanism," Applied Energy, Elsevier, vol. 351(C).
    122. Zheng, Lingwei & Liu, Zhaokun & Shen, Junnan & Wu, Chenxi, 2018. "Very short-term maximum Lyapunov exponent forecasting tool for distributed photovoltaic output," Applied Energy, Elsevier, vol. 229(C), pages 1128-1139.
    123. Chen, Yuanqing & Wang, Ding & Feng, Dachuan & Tian, Geng & Gupta, Vikrant & Cao, Renjing & Wan, Minping & Chen, Shiyi, 2025. "Three-dimensional spatiotemporal wind field reconstruction based on LiDAR and multi-scale PINN," Applied Energy, Elsevier, vol. 377(PC).
    124. Wang, Pei & Guo, Jiang & Cheng, Fangjuan & Gu, Yifeng & Yuan, Fang & Zhang, Fangqing, 2025. "A MPC-based load frequency control considering wind power intelligent forecasting," Renewable Energy, Elsevier, vol. 244(C).
    125. Jiang, Ping & Liu, Zhenkun & Niu, Xinsong & Zhang, Lifang, 2021. "A combined forecasting system based on statistical method, artificial neural networks, and deep learning methods for short-term wind speed forecasting," Energy, Elsevier, vol. 217(C).
    126. Rongsheng Liu & Minfang Peng & Xianghui Xiao, 2018. "Ultra-Short-Term Wind Power Prediction Based on Multivariate Phase Space Reconstruction and Multivariate Linear Regression," Energies, MDPI, vol. 11(10), pages 1-17, October.
    127. Niu, Dongxiao & Sun, Lijie & Yu, Min & Wang, Keke, 2022. "Point and interval forecasting of ultra-short-term wind power based on a data-driven method and hybrid deep learning model," Energy, Elsevier, vol. 254(PA).
    128. Ye, Lin & Zhao, Yongning & Zeng, Cheng & Zhang, Cihang, 2017. "Short-term wind power prediction based on spatial model," Renewable Energy, Elsevier, vol. 101(C), pages 1067-1074.
    129. Hao, Daning & Qi, Lingfei & Tairab, Alaeldin M. & Ahmed, Ammar & Azam, Ali & Luo, Dabing & Pan, Yajia & Zhang, Zutao & Yan, Jinyue, 2022. "Solar energy harvesting technologies for PV self-powered applications: A comprehensive review," Renewable Energy, Elsevier, vol. 188(C), pages 678-697.
    130. Wu, Binrong & Wang, Lin & Zeng, Yu-Rong, 2022. "Interpretable wind speed prediction with multivariate time series and temporal fusion transformers," Energy, Elsevier, vol. 252(C).
    131. Yang, Zhiling & Liu, Yongqian & Li, Chengrong, 2011. "Interpolation of missing wind data based on ANFIS," Renewable Energy, Elsevier, vol. 36(3), pages 993-998.
    132. Kong, Ziqian & Tang, Baoping & Deng, Lei & Liu, Wenyi & Han, Yan, 2020. "Condition monitoring of wind turbines based on spatio-temporal fusion of SCADA data by convolutional neural networks and gated recurrent units," Renewable Energy, Elsevier, vol. 146(C), pages 760-768.
    133. Che, Jinxing & Yuan, Fang & Deng, Dewen & Jiang, Zheyong, 2023. "Ultra-short-term probabilistic wind power forecasting with spatial-temporal multi-scale features and K-FSDW based weight," Applied Energy, Elsevier, vol. 331(C).
    134. Yang, Mao & Zhao, Meng & Huang, Dawei & Su, Xin, 2022. "A composite framework for photovoltaic day-ahead power prediction based on dual clustering of dynamic time warping distance and deep autoencoder," Renewable Energy, Elsevier, vol. 194(C), pages 659-673.
    135. Wang, Yun & Song, Mengmeng & Yang, Dazhi, 2024. "Local-global feature-based spatio-temporal wind speed forecasting with a sparse and dynamic graph," Energy, Elsevier, vol. 289(C).
    136. Liang, Chao & Umar, Muhammad & Ma, Feng & Huynh, Toan L.D., 2022. "Climate policy uncertainty and world renewable energy index volatility forecasting," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    137. Ma, Yanying & Huang, Jin, 2019. "Asymptotic error expansions and splitting extrapolation algorithm for two classes of two-dimensional Cauchy principal-value integrals," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 107-118.
    138. Lan, Hai & Zhang, Chi & Hong, Ying-Yi & He, Yin & Wen, Shuli, 2019. "Day-ahead spatiotemporal solar irradiation forecasting using frequency-based hybrid principal component analysis and neural network," Applied Energy, Elsevier, vol. 247(C), pages 389-402.
    139. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    140. Aoyu Hu & Qian Sun & Hao Liu & Ning Zhou & Zhan’ao Tan & Honglu Zhu, 2019. "A Novel Photovoltaic Array Outlier Cleaning Algorithm Based on Sliding Standard Deviation Mutation," Energies, MDPI, vol. 12(22), pages 1-16, November.
    141. Zhou, Daixuan & Liu, Yujin & Wang, Xu & Wang, Fuxing & Jia, Yan, 2025. "Combined ultra-short-term photovoltaic power prediction based on CEEMDAN decomposition and RIME optimized AM-TCN-BiLSTM," Energy, Elsevier, vol. 318(C).
    142. Gao, Bixuan & Huang, Xiaoqiao & Shi, Junsheng & Tai, Yonghang & Zhang, Jun, 2020. "Hourly forecasting of solar irradiance based on CEEMDAN and multi-strategy CNN-LSTM neural networks," Renewable Energy, Elsevier, vol. 162(C), pages 1665-1683.
    143. Zhao, Jing & Guo, Yanling & Xiao, Xia & Wang, Jianzhou & Chi, Dezhong & Guo, Zhenhai, 2017. "Multi-step wind speed and power forecasts based on a WRF simulation and an optimized association method," Applied Energy, Elsevier, vol. 197(C), pages 183-202.
    144. Putz, Dominik & Gumhalter, Michael & Auer, Hans, 2021. "A novel approach to multi-horizon wind power forecasting based on deep neural architecture," Renewable Energy, Elsevier, vol. 178(C), pages 494-505.
    145. Livera, Andreas & Theristis, Marios & Makrides, George & Georghiou, George E., 2019. "Recent advances in failure diagnosis techniques based on performance data analysis for grid-connected photovoltaic systems," Renewable Energy, Elsevier, vol. 133(C), pages 126-143.
    146. Moreira, M.O. & Balestrassi, P.P. & Paiva, A.P. & Ribeiro, P.F. & Bonatto, B.D., 2021. "Design of experiments using artificial neural network ensemble for photovoltaic generation forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    147. Wang, Han & Zhang, Ning & Du, Ershun & Yan, Jie & Han, Shuang & Li, Nan & Li, Hongxia & Liu, Yongqian, 2023. "An adaptive identification method of abnormal data in wind and solar power stations," Renewable Energy, Elsevier, vol. 208(C), pages 76-93.
    148. Sun, Haiying & Qiu, Changyu & Lu, Lin & Gao, Xiaoxia & Chen, Jian & Yang, Hongxing, 2020. "Wind turbine power modelling and optimization using artificial neural network with wind field experimental data," Applied Energy, Elsevier, vol. 280(C).
    149. Huang, Hao-Hsuan & Huang, Yun-Hsun, 2024. "Applying green learning to regional wind power prediction and fluctuation risk assessment," Energy, Elsevier, vol. 295(C).
    150. Koster, Daniel & Minette, Frank & Braun, Christian & O'Nagy, Oliver, 2019. "Short-term and regionalized photovoltaic power forecasting, enhanced by reference systems, on the example of Luxembourg," Renewable Energy, Elsevier, vol. 132(C), pages 455-470.
    151. Zhang, Yu & Li, Yanting & Zhang, Guangyao, 2020. "Short-term wind power forecasting approach based on Seq2Seq model using NWP data," Energy, Elsevier, vol. 213(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuangzeng Tian & Qifen Li & Fanyue Qian & Liting Zhang & Yongwen Yang, 2025. "Overview of the Application of Artificial Intelligence in China’s Park-Level Integrated Energy System: Current Status, Challenges, and Future Paths," Energies, MDPI, vol. 18(20), pages 1-23, October.
    2. Peng Zhang & Jinsong Hu & Kelong Zheng & Wenqing Wu & Xin Ma, 2025. "Forecasting Renewable Power Generation by Employing a Probabilistic Accumulation Non-Homogeneous Grey Model," Energies, MDPI, vol. 18(18), pages 1-33, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yun & Zhang, Fan & Kou, Hongbo & Zou, Runmin & Hu, Qinghua & Wang, Jianzhou & Srinivasan, Dipti, 2025. "A review of predictive uncertainty modeling techniques and evaluation metrics in probabilistic wind speed and wind power forecasting," Applied Energy, Elsevier, vol. 396(C).
    2. Verdone, Alessio & Panella, Massimo & De Santis, Enrico & Rizzi, Antonello, 2025. "A review of solar and wind energy forecasting: From single-site to multi-site paradigm," Applied Energy, Elsevier, vol. 392(C).
    3. Wang, Yun & Song, Mengmeng & Yang, Dazhi, 2024. "Local-global feature-based spatio-temporal wind speed forecasting with a sparse and dynamic graph," Energy, Elsevier, vol. 289(C).
    4. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    5. Cui, Xiwen & Yu, Xiaoyu & Niu, Haowei & Niu, Dongxiao & Liu, Da, 2025. "A novel data-driven multi-step wind power point-interval prediction framework integrating sliding window-based two-layer adaptive decomposition and multi-objective optimization for balancing predictio," Applied Energy, Elsevier, vol. 397(C).
    6. Fan Li & Hongzhen Wang & Dan Wang & Dong Liu & Ke Sun, 2025. "A Review of Wind Power Prediction Methods Based on Multi-Time Scales," Energies, MDPI, vol. 18(7), pages 1-47, March.
    7. Ahmed, Adil & Khalid, Muhammad, 2019. "A review on the selected applications of forecasting models in renewable power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 9-21.
    8. Niu, Dongxiao & Sun, Lijie & Yu, Min & Wang, Keke, 2022. "Point and interval forecasting of ultra-short-term wind power based on a data-driven method and hybrid deep learning model," Energy, Elsevier, vol. 254(PA).
    9. Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).
    10. Ma, Zhengjing & Mei, Gang, 2022. "A hybrid attention-based deep learning approach for wind power prediction," Applied Energy, Elsevier, vol. 323(C).
    11. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    12. Leng, Zhiyuan & Chen, Lu & Yi, Bin & Liu, Fanqian & Xie, Tao & Mei, Ziyi, 2025. "Short-term wind speed forecasting based on a novel KANInformer model and improved dual decomposition," Energy, Elsevier, vol. 322(C).
    13. Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
    14. Paweł Piotrowski & Inajara Rutyna & Dariusz Baczyński & Marcin Kopyt, 2022. "Evaluation Metrics for Wind Power Forecasts: A Comprehensive Review and Statistical Analysis of Errors," Energies, MDPI, vol. 15(24), pages 1-38, December.
    15. Liu, Lei & Wang, Xinyu & Dong, Xue & Chen, Kang & Chen, Qiuju & Li, Bin, 2024. "Interpretable feature-temporal transformer for short-term wind power forecasting with multivariate time series," Applied Energy, Elsevier, vol. 374(C).
    16. Wang, Shuangxin & Shi, Jiarong & Yang, Wei & Yin, Qingyan, 2024. "High and low frequency wind power prediction based on Transformer and BiGRU-Attention," Energy, Elsevier, vol. 288(C).
    17. Ahmad, Tanveer & Zhang, Dongdong, 2022. "A data-driven deep sequence-to-sequence long-short memory method along with a gated recurrent neural network for wind power forecasting," Energy, Elsevier, vol. 239(PB).
    18. Wang, Xiaodi & Hao, Yan & Yang, Wendong, 2024. "Novel wind power ensemble forecasting system based on mixed-frequency modeling and interpretable base model selection strategy," Energy, Elsevier, vol. 297(C).
    19. Zheng, Xidong & Bai, Feifei & Zeng, Ziyang & Jin, Tao, 2024. "A new methodology to improve wind power prediction accuracy considering power quality disturbance dimension reduction and elimination," Energy, Elsevier, vol. 287(C).
    20. Cheng, Lilin & Zang, Haixiang & Wei, Zhinong & Zhang, Fengchun & Sun, Guoqiang, 2022. "Evaluation of opaque deep-learning solar power forecast models towards power-grid applications," Renewable Energy, Elsevier, vol. 198(C), pages 960-972.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:398:y:2025:i:c:s0306261925011493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.