IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v199y2022icp599-612.html
   My bibliography  Save this article

Short term wind power prediction for regional wind farms based on spatial-temporal characteristic distribution

Author

Listed:
  • Yu, Guangzheng
  • Liu, Chengquan
  • Tang, Bo
  • Chen, Rusi
  • Lu, Liu
  • Cui, Chaoyue
  • Hu, Yue
  • Shen, Lingxu
  • Muyeen, S.M.

Abstract

Accurate regional wind power prediction is of great significance to the wind farm clusters integration and the economic dispatch of the regional power grid. The complex spatiotemporally coupled characteristics between multiple wind farms bring challenges to wind power prediction (WPP) of regional wind farm clusters. In this context, this paper proposes a regional WPP method using spatiotemporally multiple clustering algorithm and hybrid neural network to learn the potential spatial-temporal dependencies of regional wind farms. In which, a long-term daily power curve similarity method is proposed to identify spatially correlative wind power plants in long-term. Furthermore, the spatio-temporal wind farm sub-clusters are dynamically recognized by the similar fluctuation trend of short-term power sequences. On this basis, a spatial-temporal integrated prediction model consisting of the improved convolutional neural network (I–CNN) and the bidirectional long short-term memory (BILSTM) network is established for spatio-temporal sub-cluster based on point clouds distribution. Finally, the effectiveness of the proposed regional wind power forecasting framework is validated by using the Wind Integration National Dataset Toolkit, and the results show that the method improves accuracy effectively.

Suggested Citation

  • Yu, Guangzheng & Liu, Chengquan & Tang, Bo & Chen, Rusi & Lu, Liu & Cui, Chaoyue & Hu, Yue & Shen, Lingxu & Muyeen, S.M., 2022. "Short term wind power prediction for regional wind farms based on spatial-temporal characteristic distribution," Renewable Energy, Elsevier, vol. 199(C), pages 599-612.
  • Handle: RePEc:eee:renene:v:199:y:2022:i:c:p:599-612
    DOI: 10.1016/j.renene.2022.08.142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122013210
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.08.142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Mucun & Feng, Cong & Zhang, Jie, 2019. "Conditional aggregated probabilistic wind power forecasting based on spatio-temporal correlation," Applied Energy, Elsevier, vol. 256(C).
    2. Shrivastava, Nitin Anand & Lohia, Kunal & Panigrahi, Bijaya Ketan, 2016. "A multiobjective framework for wind speed prediction interval forecasts," Renewable Energy, Elsevier, vol. 87(P2), pages 903-910.
    3. Yuan, Xiaohui & Tan, Qingxiong & Lei, Xiaohui & Yuan, Yanbin & Wu, Xiaotao, 2017. "Wind power prediction using hybrid autoregressive fractionally integrated moving average and least square support vector machine," Energy, Elsevier, vol. 129(C), pages 122-137.
    4. Draxl, Caroline & Clifton, Andrew & Hodge, Bri-Mathias & McCaa, Jim, 2015. "The Wind Integration National Dataset (WIND) Toolkit," Applied Energy, Elsevier, vol. 151(C), pages 355-366.
    5. Wang, Huai-zhi & Li, Gang-qiang & Wang, Gui-bin & Peng, Jian-chun & Jiang, Hui & Liu, Yi-tao, 2017. "Deep learning based ensemble approach for probabilistic wind power forecasting," Applied Energy, Elsevier, vol. 188(C), pages 56-70.
    6. Wei Sun & Qi Gao, 2019. "Short-Term Wind Speed Prediction Based on Variational Mode Decomposition and Linear–Nonlinear Combination Optimization Model," Energies, MDPI, vol. 12(12), pages 1-27, June.
    7. Yang, Xiaolei & Milliren, Christopher & Kistner, Matt & Hogg, Christopher & Marr, Jeff & Shen, Lian & Sotiropoulos, Fotis, 2021. "High-fidelity simulations and field measurements for characterizing wind fields in a utility-scale wind farm," Applied Energy, Elsevier, vol. 281(C).
    8. Foley, Aoife M. & Leahy, Paul G. & Marvuglia, Antonino & McKeogh, Eamon J., 2012. "Current methods and advances in forecasting of wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 1-8.
    9. Ye, Lin & Zhao, Yongning & Zeng, Cheng & Zhang, Cihang, 2017. "Short-term wind power prediction based on spatial model," Renewable Energy, Elsevier, vol. 101(C), pages 1067-1074.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Ling & Zhou, Bin & Or, Siu Wing & Cao, Yijia & Wang, Huaizhi & Li, Yong & Chan, Ka Wing, 2021. "Spatio-temporal wind speed prediction of multiple wind farms using capsule network," Renewable Energy, Elsevier, vol. 175(C), pages 718-730.
    2. Wang, Yun & Song, Mengmeng & Yang, Dazhi, 2024. "Local-global feature-based spatio-temporal wind speed forecasting with a sparse and dynamic graph," Energy, Elsevier, vol. 289(C).
    3. Tawn, R. & Browell, J., 2022. "A review of very short-term wind and solar power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    4. González-Sopeña, J.M. & Pakrashi, V. & Ghosh, B., 2021. "An overview of performance evaluation metrics for short-term statistical wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    5. Nantian Huang & Enkai Xing & Guowei Cai & Zhiyong Yu & Bin Qi & Lin Lin, 2018. "Short-Term Wind Speed Forecasting Based on Low Redundancy Feature Selection," Energies, MDPI, vol. 11(7), pages 1-19, June.
    6. López, Germánico & Arboleya, Pablo, 2022. "Short-term wind speed forecasting over complex terrain using linear regression models and multivariable LSTM and NARX networks in the Andes Mountains, Ecuador," Renewable Energy, Elsevier, vol. 183(C), pages 351-368.
    7. Mojtaba Qolipour & Ali Mostafaeipour & Mohammad Saidi-Mehrabad & Hamid R Arabnia, 2019. "Prediction of wind speed using a new Grey-extreme learning machine hybrid algorithm: A case study," Energy & Environment, , vol. 30(1), pages 44-62, February.
    8. Wang, Jujie & Li, Yaning, 2018. "Multi-step ahead wind speed prediction based on optimal feature extraction, long short term memory neural network and error correction strategy," Applied Energy, Elsevier, vol. 230(C), pages 429-443.
    9. Xiao, Yulong & Zou, Chongzhe & Chi, Hetian & Fang, Rengcun, 2023. "Boosted GRU model for short-term forecasting of wind power with feature-weighted principal component analysis," Energy, Elsevier, vol. 267(C).
    10. Ian M. Trotter & Torjus F. Bolkesj{o} & Eirik O. J{aa}stad & Jon Gustav Kirkerud, 2021. "Increased Electrification of Heating and Weather Risk in the Nordic Power System," Papers 2112.02893, arXiv.org.
    11. Sun, Mucun & Feng, Cong & Zhang, Jie, 2020. "Multi-distribution ensemble probabilistic wind power forecasting," Renewable Energy, Elsevier, vol. 148(C), pages 135-149.
    12. Han, Chanok & Vinel, Alexander, 2022. "Reducing forecasting error by optimally pooling wind energy generation sources through portfolio optimization," Energy, Elsevier, vol. 239(PB).
    13. Gu, Bo & Zhang, Tianren & Meng, Hang & Zhang, Jinhua, 2021. "Short-term forecasting and uncertainty analysis of wind power based on long short-term memory, cloud model and non-parametric kernel density estimation," Renewable Energy, Elsevier, vol. 164(C), pages 687-708.
    14. Vadim Manusov & Pavel Matrenin & Muso Nazarov & Svetlana Beryozkina & Murodbek Safaraliev & Inga Zicmane & Anvari Ghulomzoda, 2023. "Short-Term Prediction of the Wind Speed Based on a Learning Process Control Algorithm in Isolated Power Systems," Sustainability, MDPI, vol. 15(2), pages 1-12, January.
    15. Zhang, Jincheng & Zhao, Xiaowei, 2021. "Spatiotemporal wind field prediction based on physics-informed deep learning and LIDAR measurements," Applied Energy, Elsevier, vol. 288(C).
    16. Gensler, André & Sick, Bernhard & Vogt, Stephan, 2018. "A review of uncertainty representations and metaverification of uncertainty assessment techniques for renewable energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 352-379.
    17. Duarte Jacondino, William & Nascimento, Ana Lucia da Silva & Calvetti, Leonardo & Fisch, Gilberto & Augustus Assis Beneti, Cesar & da Paz, Sheila Radman, 2021. "Hourly day-ahead wind power forecasting at two wind farms in northeast Brazil using WRF model," Energy, Elsevier, vol. 230(C).
    18. Lledó, Ll. & Torralba, V. & Soret, A. & Ramon, J. & Doblas-Reyes, F.J., 2019. "Seasonal forecasts of wind power generation," Renewable Energy, Elsevier, vol. 143(C), pages 91-100.
    19. Yan, Jie & Möhrlen, Corinna & Göçmen, Tuhfe & Kelly, Mark & Wessel, Arne & Giebel, Gregor, 2022. "Uncovering wind power forecasting uncertainty sources and their propagation through the whole modelling chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    20. Liu, Xin & Yang, Luoxiao & Zhang, Zijun, 2022. "The attention-assisted ordinary differential equation networks for short-term probabilistic wind power predictions," Applied Energy, Elsevier, vol. 324(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:199:y:2022:i:c:p:599-612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.