IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224005541.html
   My bibliography  Save this article

Interpretable wind speed forecasting with meteorological feature exploring and two-stage decomposition

Author

Listed:
  • Wu, Binrong
  • Yu, Sihao
  • Peng, Lu
  • Wang, Lin

Abstract

Wind speed plays a pivotal role in ensuring the stability of power grid operations. However, the inherent high volatility and non-stationarity of wind patterns pose significant challenges to achieving accurate predictions. To tackle this issue and enhance the interpretability of existing wind speed prediction models, this study proposes an innovative short-term wind speed prediction model that combines two-stage decomposition, meteorological data feature engineering, adaptive differential evolution with optional external archive (JADE) algorithm, and temporal fusion transformers (TFT). To begin, the wind speed data is subjected to decomposition using improved complete ensemble empirical mode decomposition with adaptive noise (IEEMD), yielding multiple eigenmode functions. Subsequently, the nonlinear decomposition subsequence undergoes further decomposition into multiple submodes via empirical wavelet transform (EWT), followed by the careful screening of nonlinear quadratic decomposition submodes. Additionally, meteorological features are ingeniously reconstructed into combined and statistical meteorological features, enhancing the effectiveness of input features. Next, the hyperparameters of the TFT are meticulously optimized using the powerful JADE algorithm. Empirical results unequivocally demonstrate that the IEEMD-EWT-JADE-TFT model achieves remarkably high prediction accuracy. Meanwhile, this interpretative experimental process and its results chart a novel path for decision-makers seeking reliable wind speed forecasting processes and outcomes.

Suggested Citation

  • Wu, Binrong & Yu, Sihao & Peng, Lu & Wang, Lin, 2024. "Interpretable wind speed forecasting with meteorological feature exploring and two-stage decomposition," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224005541
    DOI: 10.1016/j.energy.2024.130782
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224005541
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130782?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224005541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.