IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v341y2023ics0306261923004269.html
   My bibliography  Save this article

An interval-based nested optimization framework for deriving flexibility from smart buildings and electric vehicle fleets in the TSO-DSO coordination

Author

Listed:
  • Mansouri, Seyed Amir
  • Nematbakhsh, Emad
  • Jordehi, Ahmad Rezaee
  • Marzband, Mousa
  • Tostado-Véliz, Marcos
  • Jurado, Francisco

Abstract

Emerging renewable-based transmission and distribution systems, despite many environmental and economic benefits, due to the intermittent nature of their production resources, compared to traditional systems, need more flexibility capacities, which necessitates the need for more suppliers of flexibility. To deal with these challenges, a nested framework is presented to derive the required flexibility of the transmission system operator (TSO) from distributed energy resources (DERs) and active end-users such as smart buildings (SBs) and electric vehicle (EV) fleets at the distribution level. To this end, a novel mechanism to design the demand response program (DRP) is introduced in which tariffs with time-varying rewards are built based on flexibility requirements. The coordination between TSO and distribution system operator (DSO) is initially modeled as a bi-level non-linear programming (NLP) problem, in which the upper-level is day-ahead (DA) operational planning of DS considering the schedules received from SBs, while the lower-level is DA operational planning of the TS. The bi-level NIL problem is transformed into a single-level linear programming (LP) problem by Krush Kuhn Tucker (KKT) conditions, Big-M method and Strong Duality Theory (SDT), which makes it computationally tractable. Finally, a two-stage interval-based algorithm solves the obtained single-level problem to secure the planning against uncertainties where battery energy storage systems (BESSs) are responsible for dealing with extreme conditions. The simulation results testify that the proposed interval-based nested framework has improved the economic, technical and security aspects of the TSO-DSO coordination since it has reduced the daily costs of the energy and flexibility markets, relieved lines congestion and improved voltage characteristics.

Suggested Citation

  • Mansouri, Seyed Amir & Nematbakhsh, Emad & Jordehi, Ahmad Rezaee & Marzband, Mousa & Tostado-Véliz, Marcos & Jurado, Francisco, 2023. "An interval-based nested optimization framework for deriving flexibility from smart buildings and electric vehicle fleets in the TSO-DSO coordination," Applied Energy, Elsevier, vol. 341(C).
  • Handle: RePEc:eee:appene:v:341:y:2023:i:c:s0306261923004269
    DOI: 10.1016/j.apenergy.2023.121062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923004269
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
    2. Chen, Houhe & Wang, Di & Zhang, Rufeng & Jiang, Tao & Li, Xue, 2022. "Optimal participation of ADN in energy and reserve markets considering TSO-DSO interface and DERs uncertainties," Applied Energy, Elsevier, vol. 308(C).
    3. Amin, Amin & Kem, Oudom & Gallegos, Pablo & Chervet, Philipp & Ksontini, Feirouz & Mourshed, Monjur, 2022. "Demand response in buildings: Unlocking energy flexibility through district-level electro-thermal simulation," Applied Energy, Elsevier, vol. 305(C).
    4. Li, Yanfei & Taghizadeh-Hesary, Farhad, 2022. "The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China," Energy Policy, Elsevier, vol. 160(C).
    5. Hu, Maomao & Xiao, Fu & Wang, Shengwei, 2021. "Neighborhood-level coordination and negotiation techniques for managing demand-side flexibility in residential microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Jiang, Tao & Li, Zening & Jin, Xiaolong & Chen, Houhe & Li, Xue & Mu, Yunfei, 2018. "Flexible operation of active distribution network using integrated smart buildings with heating, ventilation and air-conditioning systems," Applied Energy, Elsevier, vol. 226(C), pages 181-196.
    7. Lai, Ching-Ming & Teh, Jiashen, 2022. "Network topology optimisation based on dynamic thermal rating and battery storage systems for improved wind penetration and reliability," Applied Energy, Elsevier, vol. 305(C).
    8. Borozan, Dj, 2022. "Asymmetric effects of policy uncertainty on renewable energy consumption in G7 countries," Renewable Energy, Elsevier, vol. 189(C), pages 412-420.
    9. Kanakadhurga, Dharmaraj & Prabaharan, Natarajan, 2022. "Demand side management in microgrid: A critical review of key issues and recent trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    10. Jin, Xiaolong & Wu, Qiuwei & Jia, Hongjie, 2020. "Local flexibility markets: Literature review on concepts, models and clearing methods," Applied Energy, Elsevier, vol. 261(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Mei & Zeman, Abdol, 2023. "Addressing greenhouse gas emissions and optimizing power systems: A novel approach for clean electricity integration in commercial buildings," Applied Energy, Elsevier, vol. 352(C).
    2. Hussain, Shahid & Irshad, Reyazur Rashid & Pallonetto, Fabiano & Hussain, Ihtisham & Hussain, Zakir & Tahir, Muhammad & Abimannan, Satheesh & Shukla, Saurabh & Yousif, Adil & Kim, Yun-Su & El-Sayed, H, 2023. "Hybrid coordination scheme based on fuzzy inference mechanism for residential charging of electric vehicles," Applied Energy, Elsevier, vol. 352(C).
    3. Moon-Jong Jang & Taehoon Kim & Eunsung Oh, 2023. "Data-Driven Modeling of Vehicle-to-Grid Flexibility in Korea," Sustainability, MDPI, vol. 15(10), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ajla Mehinovic & Matej Zajc & Nermin Suljanovic, 2023. "Interpretation and Quantification of the Flexibility Sources Location on the Flexibility Service in the Distribution Grid," Energies, MDPI, vol. 16(2), pages 1-18, January.
    2. Roldán-Blay, Carlos & Escrivá-Escrivá, Guillermo & Roldán-Porta, Carlos & Dasí-Crespo, Daniel, 2023. "Optimal sizing and design of renewable power plants in rural microgrids using multi-objective particle swarm optimization and branch and bound methods," Energy, Elsevier, vol. 284(C).
    3. Zhou, Chenghan & Jia, Hongjie & Jin, Xiaolong & Mu, Yunfei & Yu, Xiaodan & Xu, Xiandong & Li, Binghui & Sun, Weichen, 2023. "Two-stage robust optimization for space heating loads of buildings in integrated community energy systems," Applied Energy, Elsevier, vol. 331(C).
    4. Karim L. Anaya & Michael G. Pollitt, 2021. "How to Procure Flexibility Services within the Electricity Distribution System: Lessons from an International Review of Innovation Projects," Energies, MDPI, vol. 14(15), pages 1-26, July.
    5. Emrani-Rahaghi, Pouria & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2023. "Efficient voltage control of low voltage distribution networks using integrated optimized energy management of networked residential multi-energy microgrids," Applied Energy, Elsevier, vol. 349(C).
    6. Benedikt Finnah, 2022. "Optimal bidding functions for renewable energies in sequential electricity markets," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 1-27, March.
    7. Seong-Hyeon Cha & Sun-Hyeok Kwak & Woong Ko, 2023. "A Robust Optimization Model of Aggregated Resources Considering Serving Ratio for Providing Reserve Power in the Joint Electricity Market," Energies, MDPI, vol. 16(20), pages 1-27, October.
    8. Doumen, Sjoerd C. & Nguyen, Phuong & Kok, Koen, 2022. "Challenges for large-scale Local Electricity Market implementation reviewed from the stakeholder perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    9. Lyu, Cheng & Jia, Youwei & Xu, Zhao, 2021. "Fully decentralized peer-to-peer energy sharing framework for smart buildings with local battery system and aggregated electric vehicles," Applied Energy, Elsevier, vol. 299(C).
    10. Luo, Shihua & Hu, Weihao & Liu, Wen & Liu, Zhou & Huang, Qi & Chen, Zhe, 2022. "Flexibility enhancement measures under the COVID-19 pandemic – A preliminary comparative analysis in Denmark, the Netherlands, and Sichuan of China," Energy, Elsevier, vol. 239(PC).
    11. Yang, Shiyu & Oliver Gao, H. & You, Fengqi, 2022. "Model predictive control in phase-change-material-wallboard-enhanced building energy management considering electricity price dynamics," Applied Energy, Elsevier, vol. 326(C).
    12. Pinto, Giuseppe & Piscitelli, Marco Savino & Vázquez-Canteli, José Ramón & Nagy, Zoltán & Capozzoli, Alfonso, 2021. "Coordinated energy management for a cluster of buildings through deep reinforcement learning," Energy, Elsevier, vol. 229(C).
    13. Badr Eddine Lebrouhi & Eric Schall & Bilal Lamrani & Yassine Chaibi & Tarik Kousksou, 2022. "Energy Transition in France," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    14. Shang, Yunfeng & Han, Ding & Gozgor, Giray & Mahalik, Mantu Kumar & Sahoo, Bimal Kishore, 2022. "The impact of climate policy uncertainty on renewable and non-renewable energy demand in the United States," Renewable Energy, Elsevier, vol. 197(C), pages 654-667.
    15. Zhaowen Liang & Kai Liu & Jinjin Huang & Enfei Zhou & Chao Wang & Hui Wang & Qiong Huang & Zhenpo Wang, 2022. "Powertrain Design and Energy Management Strategy Optimization for a Fuel Cell Electric Intercity Coach in an Extremely Cold Mountain Area," Sustainability, MDPI, vol. 14(18), pages 1-16, September.
    16. Yap, Kah Yung & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2023. "Blockchain technology for distributed generation: A review of current development, challenges and future prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    17. Bellenbaum, Julia & Höckner, Jonas & Weber, Christoph, 2022. "Designing flexibility procurement markets for congestion management – investigating two-stage procurement auctions," Energy Economics, Elsevier, vol. 106(C).
    18. Babagheibi, Mahsa & Jadid, Shahram & Kazemi, Ahad, 2023. "An Incentive-based robust flexibility market for congestion management of an active distribution system to use the free capacity of Microgrids," Applied Energy, Elsevier, vol. 336(C).
    19. Wu, Long & Yin, Xunyuan & Pan, Lei & Liu, Jinfeng, 2023. "Distributed economic predictive control of integrated energy systems for enhanced synergy and grid response: A decomposition and cooperation strategy," Applied Energy, Elsevier, vol. 349(C).
    20. Jingna Kou & Wei Li & Rui Zhang & Dingxiong Shi, 2023. "Hydrogen as a Transition Tool in a Fossil Fuel Resource Region: Taking China’s Coal Capital Shanxi as an Example," Sustainability, MDPI, vol. 15(15), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:341:y:2023:i:c:s0306261923004269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.