IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics036054422500800x.html
   My bibliography  Save this article

A three-stage optimization framework for unlocking demand-side flexibility in highly renewable electricity grids

Author

Listed:
  • Bagheritabar, Mahmoud
  • Hakimi, Seyed Mehdi
  • Derakhshan, Ghasem
  • Rezaee Jordehi, Ahmad

Abstract

The integration of renewable resources into distribution systems has significantly increased the uncertainties associated with real-time operations, thereby necessitating more flexibility services compared to those required in traditional distribution systems. Demand-side resources have substantial potential to contribute to this flexibility, making it crucial to develop new mechanisms for harnessing this potential. This paper presents a comprehensive three-stage framework for releasing flexibility capacities within energy communities and microgrids in balancing markets, aimed at eliminating real-time imbalances between energy production and consumption. In the first stage, a risk-averse estimation mechanism is introduced, allowing for the estimation of flexible capacities within energy communities. These capacities are then communicated to the microgrids before the balancing market is initiated. At the second stage, the microgrids address the balancing needs within their area considering the flexible capacities received from the energy communities. Finally, at the third stage, surplus flexibility capacities are offered to the upstream market managed by the Distribution System Operator (DSO). This model is implemented using the GUROBI solver in GAMS on a 69-bus distribution system that includes four microgrids. The simulation results demonstrate the model's effectiveness in extracting maximum capacities from the demand side. Notably, by unlocking the flexible capacities of Thermostatically Controlled Loads (TCLs), battery storage systems, and fleets of Electric Vehicles (EVs), the model meets 79.61 % of the microgrids' required balancing capacities locally, while also reducing their daily costs by 27.74 %.

Suggested Citation

  • Bagheritabar, Mahmoud & Hakimi, Seyed Mehdi & Derakhshan, Ghasem & Rezaee Jordehi, Ahmad, 2025. "A three-stage optimization framework for unlocking demand-side flexibility in highly renewable electricity grids," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s036054422500800x
    DOI: 10.1016/j.energy.2025.135158
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422500800X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135158?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Turdybek, Balgynbek & Tostado-Véliz, Marcos & Mansouri, Seyed Amir & Rezaee Jordehi, Ahmad & Jurado, Francisco, 2024. "A local electricity market mechanism for flexibility provision in industrial parks involving Heterogenous flexible loads," Applied Energy, Elsevier, vol. 359(C).
    2. Arnold, Fabian & Lilienkamp, Arne & Namockel, Nils, 2024. "Diffusion of electric vehicles and their flexibility potential for smoothing residual demand — A spatio-temporal analysis for Germany," Energy, Elsevier, vol. 308(C).
    3. Khatibi, Mahmood & Rahnama, Samira & Vogler-Finck, Pierre & Dimon Bendtsen, Jan & Afshari, Alireza, 2023. "Towards designing an aggregator to activate the energy flexibility of multi-zone buildings using a hierarchical model-based scheme," Applied Energy, Elsevier, vol. 333(C).
    4. Yi, Xinning & Lu, Tianguang & Li, Yixiao & Ai, Qian & Hao, Ran, 2025. "Collaborative planning of multi-energy systems integrating complete hydrogen energy chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    5. Rosales-Asensio, Enrique & Diez, David Borge & Sarmento, Paula, 2024. "Electricity balancing challenges for markets with high variable renewable generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    6. Veronese, Elisa & Manzolini, Giampaolo & Barchi, Grazia & Moser, David, 2024. "The role of flexible demand to enhance the integration of utility-scale photovoltaic plants in future energy scenarios: An Italian case study," Renewable Energy, Elsevier, vol. 227(C).
    7. Huang, Chunyi & Zhang, Mingzhi & Wang, Chengmin & Xie, Ning & Yuan, Zhao, 2022. "An interactive two-stage retail electricity market for microgrids with peer-to-peer flexibility trading," Applied Energy, Elsevier, vol. 320(C).
    8. Zhang, Zhiyang & Bu, Yifeng & Wu, Haitao & Wu, Linyan & Cui, Lin, 2023. "Parametric study of the effects of clump weights on the performance of a novel wind-wave hybrid system," Renewable Energy, Elsevier, vol. 219(P1).
    9. Mansouri, Seyed Amir & Rezaee Jordehi, Ahmad & Marzband, Mousa & Tostado-Véliz, Marcos & Jurado, Francisco & Aguado, José A., 2023. "An IoT-enabled hierarchical decentralized framework for multi-energy microgrids market management in the presence of smart prosumers using a deep learning-based forecaster," Applied Energy, Elsevier, vol. 333(C).
    10. You, Zhengjie & Lumpp, Sebastian Dirk & Doepfert, Markus & Tzscheutschler, Peter & Goebel, Christoph, 2024. "Leveraging flexibility of residential heat pumps through local energy markets," Applied Energy, Elsevier, vol. 355(C).
    11. Tong, Ziqiang & Mansouri, Seyed Amir & Huang, Shoujun & Rezaee Jordehi, Ahmad & Tostado-Véliz, Marcos, 2023. "The role of smart communities integrated with renewable energy resources, smart homes and electric vehicles in providing ancillary services: A tri-stage optimization mechanism," Applied Energy, Elsevier, vol. 351(C).
    12. Mansouri, Seyed Amir & Nematbakhsh, Emad & Jordehi, Ahmad Rezaee & Marzband, Mousa & Tostado-Véliz, Marcos & Jurado, Francisco, 2023. "An interval-based nested optimization framework for deriving flexibility from smart buildings and electric vehicle fleets in the TSO-DSO coordination," Applied Energy, Elsevier, vol. 341(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Gao & Pan, Haiyang & Liu, Yanming & Li, Qian & Wang, Ping, 2025. "A methodology for integrating hydrogen refueling stations in multi-microgrids and coordination of distribution systems and transmission system," Energy, Elsevier, vol. 322(C).
    2. Dai, Shuangfeng & Mansouri, Seyed Amir & Huang, Shoujun & Alharthi, Yahya Z. & Wu, Yongfei & Bagherzadeh, Leila, 2024. "A multi-stage techno-economic model for harnessing flexibility from IoT-enabled appliances and smart charging systems: Developing a competitive local flexibility market using Stackelberg game theory," Applied Energy, Elsevier, vol. 373(C).
    3. Bardeeniz, Santi & Panjapornpon, Chanin & Fongsamut, Chalermpan & Ngaotrakanwiwat, Pailin & Hussain, Mohamed Azlan, 2024. "Energy efficiency characteristics analysis for process diagnosis under anomaly using self-adaptive-based SHAP guided optimization," Energy, Elsevier, vol. 309(C).
    4. Wu, Binrong & Yu, Sihao & Peng, Lu & Wang, Lin, 2024. "Interpretable wind speed forecasting with meteorological feature exploring and two-stage decomposition," Energy, Elsevier, vol. 294(C).
    5. Zhang, Jinya & Wang, Chenchen, 2025. "Thermodynamic and economic analysis of LNG-LAES and LNG-LCES systems: A comparative study," Energy, Elsevier, vol. 324(C).
    6. Qing, Ke & Du, Yuefang & Huang, Qi & Duan, Chao & Hu, Weihao, 2024. "Energy scheduling for microgrids with renewable energy sources considering an adjustable convex hull based uncertainty set," Renewable Energy, Elsevier, vol. 220(C).
    7. Wu, Yongfei & Huang, Shoujun & Alharthi, Yahya Z. & Wang, Yubin, 2025. "Market scheduling of emission-aware smart prosumers in smart grids: A multi-objective bi-level approach," Applied Energy, Elsevier, vol. 389(C).
    8. Li, Linyue & Li, Chenxiao & Alharthi, Yahya Z. & Wang, Yubin & Safaraliev, Murodbek, 2025. "A two-layer economic resilience model for distribution network restoration after natural disasters," Applied Energy, Elsevier, vol. 377(PC).
    9. He, Ruofan & Wan, Panbing, 2024. "Electricity market integration in China: The role of government officials’ hometown ties," Energy, Elsevier, vol. 303(C).
    10. Hussain, Shahid & Irshad, Reyazur Rashid & Pallonetto, Fabiano & Hussain, Ihtisham & Hussain, Zakir & Tahir, Muhammad & Abimannan, Satheesh & Shukla, Saurabh & Yousif, Adil & Kim, Yun-Su & El-Sayed, H, 2023. "Hybrid coordination scheme based on fuzzy inference mechanism for residential charging of electric vehicles," Applied Energy, Elsevier, vol. 352(C).
    11. Wu, Yongfei & Gu, Weiyu & Huang, Shoujun & Wei, Xiaolong & Safaraliev, Murodbek, 2025. "A four-layer business model for integration of electric vehicle charging stations and hydrogen fuelling stations into modern power systems," Applied Energy, Elsevier, vol. 377(PC).
    12. Vairagade, Vikrant S. & Bahoria, Boskey & Bangre, Abhishek & Uparkar, Satyajit & Pethe, Yoginee S. & Shelare, Sagar D. & Sharma, Shubham & Bisht, Yashwant Singh & Sharma, Manish & Kulshreshta, Ankur &, 2025. "Multi-criteria decision-making approaches to resource optimization in renewable energy systems," Renewable Energy, Elsevier, vol. 245(C).
    13. Wang, Canghong & Zhang, Yuwei & Yang, Shuo & Zhao, Lin & Nicolas, Kloss & Zhu, Zhiliang, 2025. "Mitigation of carbon footprint in hybrid vehicle-dominated distribution systems via P2G technology and virtual assets," Energy, Elsevier, vol. 319(C).
    14. Iqbal, Sajid & Zhang, Qingyu & Chang, Ming, 2025. "Turning waste to watts: studying tyre pyrolysis oil production supply for electricity generation and net-zero carbon emission with life cycle assessment approach," Energy, Elsevier, vol. 324(C).
    15. Deng, Xu & Lv, Tao & Meng, Xiangyun & Li, Cong & Hou, Xiaoran & Xu, Jie & Wang, Yinhao & Liu, Feng, 2024. "Assessing the carbon emission reduction effect of flexibility option for integrating variable renewable energy," Energy Economics, Elsevier, vol. 132(C).
    16. Abouzied, Amr S. & Farouk, Naeim & Shaban, Mohamed & Abed, Azher M. & Alhomayani, Fahad M. & Formanova, Shoira & Khan, Mohammad Nadeem & Alturise, Fahad & Alkhalaf, Salem & Albalawi, Hind, 2025. "Optimization of Ex/energy efficiencies in an integrated compressed air energy storage system (CAES) using machine learning algorithms: A multi-objective approach based on analysis of variance," Energy, Elsevier, vol. 322(C).
    17. Wu, Long & Yin, Xunyuan & Pan, Lei & Liu, Jinfeng, 2023. "Distributed economic predictive control of integrated energy systems for enhanced synergy and grid response: A decomposition and cooperation strategy," Applied Energy, Elsevier, vol. 349(C).
    18. Barone, G. & Buonomano, A. & Cipolla, G. & Forzano, C. & Giuzio, G.F. & Russo, G., 2024. "Designing aggregation criteria for end-users integration in energy communities: Energy and economic optimisation based on hybrid neural networks models," Applied Energy, Elsevier, vol. 371(C).
    19. Xu, Yanli & Li, Hui & Abed, Azher M. & Alghassab, Mohammed A. & Shaban, Mohamed & Abdullaev, Sherzod & Mahariq, Ibrahim & Abouzied, Amr S. & Elmasry, Yasser & Alrawashdeh, Albara Ibrahim, 2025. "Renewable energy/freshwater security goals in urban areas through geothermal-based desalination system: Central composite design analysis and optimization," Renewable Energy, Elsevier, vol. 241(C).
    20. Jiang, Meihui & Xu, Zhenjiang & Zhu, Hongyu & Hwang Goh, Hui & Agustiono Kurniawan, Tonni & Liu, Tianhao & Zhang, Dongdong, 2024. "Integrated demand response modeling and optimization technologies supporting energy internet," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s036054422500800x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.