IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v319y2025ics0360544225007157.html
   My bibliography  Save this article

Mitigation of carbon footprint in hybrid vehicle-dominated distribution systems via P2G technology and virtual assets

Author

Listed:
  • Wang, Canghong
  • Zhang, Yuwei
  • Yang, Shuo
  • Zhao, Lin
  • Nicolas, Kloss
  • Zhu, Zhiliang

Abstract

The progressive electrification of urban transportation introduces complex challenges, with plug-in hybrid CNG electric vehicles (PLHGEVs) helping the transition toward fully electric mobility. However, optimizing their operation requires careful consideration of environmental impacts. This research provides insights into decarbonizing urban transport and distribution systems, offering a bridging solution that maximizes the benefits of multi-energy technologies development while paving the way for fully electrified transport. The proposed approach integrates Power-to-Gas (P-2-G) technology with virtual multi-energy hubs to enhance system flexibility and environmental sustainability. It optimizes the interactions between multiple energy carriers, renewable sources, and PLHGEVs operating in both electric and gas modes. By incorporating P-2-G facilities for green hydrogen production, the framework effectively mitigates emissions from fossil-based energy sources and PLHGEVs running on compressed natural gas through carbon dioxide recycling. The assessment of the IEEE 33-bus test system shows that the model achieves a 20 % reduction in emissions. However, due to the high cost of P-2-G system integration, profitability is impacted, resulting in a decrease from 60 to 35 %. These findings highlight the potential of PLHGEV adoption and multi-energy hubs in urban areas to support both sustainability and economic growth.

Suggested Citation

  • Wang, Canghong & Zhang, Yuwei & Yang, Shuo & Zhao, Lin & Nicolas, Kloss & Zhu, Zhiliang, 2025. "Mitigation of carbon footprint in hybrid vehicle-dominated distribution systems via P2G technology and virtual assets," Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225007157
    DOI: 10.1016/j.energy.2025.135073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225007157
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. SoltaniNejad Farsangi, Alireza & Hadayeghparast, Shahrzad & Mehdinejad, Mehdi & Shayanfar, Heidarali, 2018. "A novel stochastic energy management of a microgrid with various types of distributed energy resources in presence of demand response programs," Energy, Elsevier, vol. 160(C), pages 257-274.
    2. Mansouri, Seyed Amir & Ahmarinejad, Amir & Javadi, Mohammad Sadegh & Catalão, João P.S., 2020. "Two-stage stochastic framework for energy hubs planning considering demand response programs," Energy, Elsevier, vol. 206(C).
    3. Mansouri, Seyed Amir & Nematbakhsh, Emad & Ahmarinejad, Amir & Jordehi, Ahmad Rezaee & Javadi, Mohammad Sadegh & Marzband, Mousa, 2022. "A hierarchical scheduling framework for resilience enhancement of decentralized renewable-based microgrids considering proactive actions and mobile units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Yunlong Zhang & Panhong Zhang & Sheng Du & Hanlin Dong, 2024. "Economic Optimal Scheduling of Integrated Energy System Considering Wind–Solar Uncertainty and Power to Gas and Carbon Capture and Storage," Energies, MDPI, vol. 17(11), pages 1-26, June.
    5. Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Amir Mansouri, Seyed & Jurado, Francisco, 2022. "Day-ahead scheduling of 100% isolated communities under uncertainties through a novel stochastic-robust model," Applied Energy, Elsevier, vol. 328(C).
    6. Zhao, Zhuoli & Xu, Jiawen & Lei, Yu & Liu, Chang & Shi, Xuntao & Lai, Loi Lei, 2025. "Robust dynamic dispatch strategy for multi-uncertainties integrated energy microgrids based on enhanced hierarchical model predictive control," Applied Energy, Elsevier, vol. 381(C).
    7. Kagiri, Charles & Wanjiru, Evan M. & Zhang, Lijun & Xia, Xiaohua, 2018. "Optimized response to electricity time-of-use tariff of a compressed natural gas fuelling station," Applied Energy, Elsevier, vol. 222(C), pages 244-256.
    8. Su, Yongxin & Zhou, Yao & Tan, Mao, 2020. "An interval optimization strategy of household multi-energy system considering tolerance degree and integrated demand response," Applied Energy, Elsevier, vol. 260(C).
    9. Tong, Ziqiang & Mansouri, Seyed Amir & Huang, Shoujun & Rezaee Jordehi, Ahmad & Tostado-Véliz, Marcos, 2023. "The role of smart communities integrated with renewable energy resources, smart homes and electric vehicles in providing ancillary services: A tri-stage optimization mechanism," Applied Energy, Elsevier, vol. 351(C).
    10. Mansouri, Seyed Amir & Nematbakhsh, Emad & Jordehi, Ahmad Rezaee & Marzband, Mousa & Tostado-Véliz, Marcos & Jurado, Francisco, 2023. "An interval-based nested optimization framework for deriving flexibility from smart buildings and electric vehicle fleets in the TSO-DSO coordination," Applied Energy, Elsevier, vol. 341(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seyfi, Mohammad & Mehdinejad, Mehdi & Mohammadi-Ivatloo, Behnam & Shayanfar, Heidarali, 2022. "Deep learning-based scheduling of virtual energy hubs with plug-in hybrid compressed natural gas-electric vehicles," Applied Energy, Elsevier, vol. 321(C).
    2. Bardeeniz, Santi & Panjapornpon, Chanin & Fongsamut, Chalermpan & Ngaotrakanwiwat, Pailin & Hussain, Mohamed Azlan, 2024. "Energy efficiency characteristics analysis for process diagnosis under anomaly using self-adaptive-based SHAP guided optimization," Energy, Elsevier, vol. 309(C).
    3. Wu, Binrong & Yu, Sihao & Peng, Lu & Wang, Lin, 2024. "Interpretable wind speed forecasting with meteorological feature exploring and two-stage decomposition," Energy, Elsevier, vol. 294(C).
    4. An, Yimeng & Dang, Yaoguo & Wang, Junjie & Zhou, Huimin & Mai, Son T., 2024. "Mixed-frequency data Sampling Grey system Model: Forecasting annual CO2 emissions in China with quarterly and monthly economic-energy indicators," Applied Energy, Elsevier, vol. 370(C).
    5. Bagheritabar, Mahmoud & Hakimi, Seyed Mehdi & Derakhshan, Ghasem & Rezaee Jordehi, Ahmad, 2025. "A three-stage optimization framework for unlocking demand-side flexibility in highly renewable electricity grids," Energy, Elsevier, vol. 320(C).
    6. Lee, Chien-Chiang & Yan, Jingyang, 2024. "Will artificial intelligence make energy cleaner? Evidence of nonlinearity," Applied Energy, Elsevier, vol. 363(C).
    7. Qing, Ke & Du, Yuefang & Huang, Qi & Duan, Chao & Hu, Weihao, 2024. "Energy scheduling for microgrids with renewable energy sources considering an adjustable convex hull based uncertainty set," Renewable Energy, Elsevier, vol. 220(C).
    8. Ma, Xuran & Wang, Meng & Wang, Peng & Wang, Yixin & Mao, Ding & Kosonen, Risto, 2024. "Energy supply structure optimization of integrated energy system considering load uncertainty at the planning stage," Energy, Elsevier, vol. 305(C).
    9. Wu, Yongfei & Huang, Shoujun & Alharthi, Yahya Z. & Wang, Yubin, 2025. "Market scheduling of emission-aware smart prosumers in smart grids: A multi-objective bi-level approach," Applied Energy, Elsevier, vol. 389(C).
    10. Wang, Dongxue & Fan, Ruguo & Xu, Xiaoxia & Du, Kang & Wang, Yitong & Dou, Xihao, 2024. "Hybrid game model for electricity trading and pricing among multiple microgrids and consumers based on demand-side complex networks," Energy, Elsevier, vol. 313(C).
    11. Li, Linyue & Li, Chenxiao & Alharthi, Yahya Z. & Wang, Yubin & Safaraliev, Murodbek, 2025. "A two-layer economic resilience model for distribution network restoration after natural disasters," Applied Energy, Elsevier, vol. 377(PC).
    12. He, Ruofan & Wan, Panbing, 2024. "Electricity market integration in China: The role of government officials’ hometown ties," Energy, Elsevier, vol. 303(C).
    13. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    14. Xi Ye & Gan Li & Tong Zhu & Lei Zhang & Yanfeng Wang & Xiang Wang & Hua Zhong, 2023. "A Dispatching Method for Large-Scale Interruptible Load and Electric Vehicle Clusters to Alleviate Overload of Interface Power Flow," Sustainability, MDPI, vol. 15(16), pages 1-20, August.
    15. Mansouri, Seyed Amir & Rezaee Jordehi, Ahmad & Marzband, Mousa & Tostado-Véliz, Marcos & Jurado, Francisco & Aguado, José A., 2023. "An IoT-enabled hierarchical decentralized framework for multi-energy microgrids market management in the presence of smart prosumers using a deep learning-based forecaster," Applied Energy, Elsevier, vol. 333(C).
    16. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.
    17. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & Pep Salas & José Matas, 2020. "A Comprehensive Model for the Design of a Microgrid under Regulatory Constraints Using Synthetical Data Generation and Stochastic Optimization," Energies, MDPI, vol. 13(21), pages 1-26, October.
    18. Zhou, Liangsong & Wei, Xiaolong & Suvorov, Anton & Safaraliev, Murodbek, 2024. "Operation of coupled power-gas networks with hydrogen refueling stations, responsive demands and storage systems: A novel stochastic framework," Energy, Elsevier, vol. 309(C).
    19. Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Fernández-Lobato, Lázuli & Jurado, Francisco, 2023. "Robust energy management in isolated microgrids with hydrogen storage and demand response," Applied Energy, Elsevier, vol. 345(C).
    20. Tsao, Yu-Chung & Thanh, Vo-Van & Lu, Jye-Chyi, 2019. "Multiobjective robust fuzzy stochastic approach for sustainable smart grid design," Energy, Elsevier, vol. 176(C), pages 929-939.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225007157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.