IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v345y2023ics0306261923006839.html
   My bibliography  Save this article

Robust energy management in isolated microgrids with hydrogen storage and demand response

Author

Listed:
  • Tostado-Véliz, Marcos
  • Rezaee Jordehi, Ahmad
  • Fernández-Lobato, Lázuli
  • Jurado, Francisco

Abstract

Hydrogen is called to be one of the main energy vectors in future energy systems, especially for energy storage, where this carrier presents some interesting features. Its application in microgrids might help to improve economic, environmental and reliability indicators, providing greater storage capacity than other technologies, like batteries. Following this idea, this paper develops a robust energy management methodology for isolated microgrids considering hydrogen storage and demand response initiatives. The new proposal is raised as a nested max-min optimization framework. To reduce the original problem to a tractable single-level one, a master-slave scheme is developed by which binary variables can be fixed and thus the inner problem can be reduced to its equivalent Karush-Kuhn-Tucker conditions. Then, the overall optimization paradigm is solved in an iterative fashion used the Constraint-and-Column Generation Algorithm. The resulting tool is applied to a benchmark isolated microgrid, thus validating it for industry applications. Moreover, different relevant results are analysed in-depth. Thus, the role of hydrogen storage and demand response initiatives is discussed, concluding that flexible demand has a more notable impact on monetary savings than hydrogen storage, reducing the total cost by 6 % with respect to the base case. Some intrinsic issues are also identified. For example, it is observed that flexible consumers are more frequently called when the hydrogen chain is enabled, which may provoke undesirable effects like response fatigue.

Suggested Citation

  • Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Fernández-Lobato, Lázuli & Jurado, Francisco, 2023. "Robust energy management in isolated microgrids with hydrogen storage and demand response," Applied Energy, Elsevier, vol. 345(C).
  • Handle: RePEc:eee:appene:v:345:y:2023:i:c:s0306261923006839
    DOI: 10.1016/j.apenergy.2023.121319
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923006839
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121319?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    2. Tostado-Véliz, Marcos & Kamel, Salah & Hasanien, Hany M. & Turky, Rania A. & Jurado, Francisco, 2022. "Uncertainty-aware day-ahead scheduling of microgrids considering response fatigue: An IGDT approach," Applied Energy, Elsevier, vol. 310(C).
    3. Fang, Xiaolun & Dong, Wei & Wang, Yubin & Yang, Qiang, 2022. "Multiple time-scale energy management strategy for a hydrogen-based multi-energy microgrid," Applied Energy, Elsevier, vol. 328(C).
    4. Zhu, Dafeng & Yang, Bo & Liu, Qi & Ma, Kai & Zhu, Shanying & Ma, Chengbin & Guan, Xinping, 2020. "Energy trading in microgrids for synergies among electricity, hydrogen and heat networks," Applied Energy, Elsevier, vol. 272(C).
    5. Tostado-Véliz, Marcos & Kamel, Salah & Aymen, Flah & Rezaee Jordehi, Ahmad & Jurado, Francisco, 2022. "A Stochastic-IGDT model for energy management in isolated microgrids considering failures and demand response," Applied Energy, Elsevier, vol. 317(C).
    6. Alavi, Farid & Park Lee, Esther & van de Wouw, Nathan & De Schutter, Bart & Lukszo, Zofia, 2017. "Fuel cell cars in a microgrid for synergies between hydrogen and electricity networks," Applied Energy, Elsevier, vol. 192(C), pages 296-304.
    7. Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Amir Mansouri, Seyed & Jurado, Francisco, 2022. "Day-ahead scheduling of 100% isolated communities under uncertainties through a novel stochastic-robust model," Applied Energy, Elsevier, vol. 328(C).
    8. Song, Yuguang & Xia, Mingchao & Chen, Qifang & Chen, Fangjian, 2023. "A data-model fusion dispatch strategy for the building energy flexibility based on the digital twin," Applied Energy, Elsevier, vol. 332(C).
    9. Wu, Xiong & Qi, Shixiong & Wang, Zhao & Duan, Chao & Wang, Xiuli & Li, Furong, 2019. "Optimal scheduling for microgrids with hydrogen fueling stations considering uncertainty using data-driven approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Li, Bei & Miao, Hongzhi & Li, Jiangchen, 2021. "Multiple hydrogen-based hybrid storage systems operation for microgrids: A combined TOPSIS and model predictive control methodology," Applied Energy, Elsevier, vol. 283(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).
    2. Tostado-Véliz, Marcos & Jordehi, Ahmad Rezaee & Mansouri, Seyed Amir & Jurado, Francisco, 2023. "A two-stage IGDT-stochastic model for optimal scheduling of energy communities with intelligent parking lots," Energy, Elsevier, vol. 263(PD).
    3. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    4. Koecklin, Manuel Tong & Longoria, Genaro & Fitiwi, Desta Z. & DeCarolis, Joseph F. & Curtis, John, 2021. "Public acceptance of renewable electricity generation and transmission network developments: Insights from Ireland," Energy Policy, Elsevier, vol. 151(C).
    5. Huang, Qisheng & Xu, Yunjian & Courcoubetis, Costas, 2020. "Stackelberg competition between merchant and regulated storage investment in wholesale electricity markets," Applied Energy, Elsevier, vol. 264(C).
    6. Burton, N.A. & Padilla, R.V. & Rose, A. & Habibullah, H., 2021. "Increasing the efficiency of hydrogen production from solar powered water electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Konstantina Peloriadi & Petros Iliadis & Panagiotis Boutikos & Konstantinos Atsonios & Panagiotis Grammelis & Aristeidis Nikolopoulos, 2022. "Technoeconomic Assessment of LNG-Fueled Solid Oxide Fuel Cells in Small Island Systems: The Patmos Island Case Study," Energies, MDPI, vol. 15(11), pages 1-20, May.
    8. Matija Kostelac & Lin Herenčić & Tomislav Capuder, 2022. "Planning and Operational Aspects of Individual and Clustered Multi-Energy Microgrid Options," Energies, MDPI, vol. 15(4), pages 1-17, February.
    9. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    10. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2017. "Techno-economics and environmental analysis of energy storage for a student residence under a South African time-of-use tariff rate," Energy, Elsevier, vol. 135(C), pages 413-429.
    11. Tong Koecklin, Manuel & Fitiwi, Desta & de Carolis, Joseph F. & Curtis, John, 2020. "Renewable electricity generation and transmission network developments in light of public opposition: Insights from Ireland," Papers WP653, Economic and Social Research Institute (ESRI).
    12. Vassilis M. Charitopoulos & Mathilde Fajardy & Chi Kong Chyong & David M. Reiner, 2022. "The case of 100% electrification of domestic heat in Great Britain," Working Papers EPRG2206, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    13. Behnam Zakeri & Samuli Rinne & Sanna Syri, 2015. "Wind Integration into Energy Systems with a High Share of Nuclear Power—What Are the Compromises?," Energies, MDPI, vol. 8(4), pages 1-35, March.
    14. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
    15. Tozzi, Peter & Jo, Jin Ho, 2017. "A comparative analysis of renewable energy simulation tools: Performance simulation model vs. system optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 390-398.
    16. Yang, Jibin & Xu, Xiaohui & Peng, Yiqiang & Zhang, Jiye & Song, Pengyun, 2019. "Modeling and optimal energy management strategy for a catenary-battery-ultracapacitor based hybrid tramway," Energy, Elsevier, vol. 183(C), pages 1123-1135.
    17. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.
    18. Dusonchet, L. & Favuzza, S. & Massaro, F. & Telaretti, E. & Zizzo, G., 2019. "Technological and legislative status point of stationary energy storages in the EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 158-167.
    19. Kurnia, Jundika C. & Sasmito, Agus P. & Shamim, Tariq, 2017. "Performance evaluation of a PEM fuel cell stack with variable inlet flows under simulated driving cycle conditions," Applied Energy, Elsevier, vol. 206(C), pages 751-764.
    20. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & Pep Salas & José Matas, 2020. "A Comprehensive Model for the Design of a Microgrid under Regulatory Constraints Using Synthetical Data Generation and Stochastic Optimization," Energies, MDPI, vol. 13(21), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:345:y:2023:i:c:s0306261923006839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.