IDEAS home Printed from https://ideas.repec.org/p/qed/dpaper/4605.html
   My bibliography  Save this paper

Integration Of Wind Power into An Electricity System Using Pumped Storage: Economic Challenges and Stakeholder Impacts

Author

Listed:
  • Pejman Bahramian

    (Department of Economics, Queens University, Kingston, Ontario, Canada)

  • Glenn P. Jenkins

    (Department of Economics, Queens University, Kingston, Ontario, Canada and Cambridge Resources International Inc.)

  • Frank Milne

    (Department of Economics, Queens University, Kingston, Ontario, Canada)

Abstract

The Province of Ontario has had an aggressive program of introducing wind electricity generation technologies into its generation supply mix. This, combined with the rigid baseload production by nuclear and hydro plants, has created a situation where a surplus baseload electricity supply is projected for the next 20 years. Pumped hydro storage (PHS) is suggested as an economically viable technology for storing energy from non-dispatchable wind energy sources in the baseload period to be used the generate electricity in peak periods. An analytical framework has been developed to explore the feasibility of the PHS facility and to compare its cost with that of alternative gas power plants. Two situations are analyzed. First, the PHS plant uses only surplus energy for the first 20 years of operation and then is retired from the system. Second, an additional 20 years of PHS usefulness is added by making investments in wind electricity generation to provide energy for pumping. Given the capital costs of building PHS in Ontario, the conclusions of this study suggest that a PHS facility is not economically cost-effective for utilizing the projected off-peak surpluses. The economic analysis also illustrates that in the context of Ontario, the integration of PHS with wind power generation will have a further negative impact on the Canadian economy in all circumstances. This loss is borne mainly by the electricity consumers of Ontario. Even considering the cost of CO2 emissions from a world perspective, this investment is not cost-effective. It would be much better socially from a world perspective and economically from Canada's perspective if the surplus baseload electricity from Ontario were given away free to the USA. It could then be used to reduce generation by natural gas plants in the USA, hence reducing CO2 emissions globally, without any incremental economic cost to Canada.

Suggested Citation

  • Pejman Bahramian & Glenn P. Jenkins & Frank Milne, 2023. "Integration Of Wind Power into An Electricity System Using Pumped Storage: Economic Challenges and Stakeholder Impacts," Development Discussion Papers 2023-07, JDI Executive Programs.
  • Handle: RePEc:qed:dpaper:4605
    as

    Download full text from publisher

    File URL: http://cri-world.com/publications/qed_dp_4605.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bahramian, Pejman & Jenkins, Glenn P. & Milne, Frank, 2021. "A stakeholder analysis of investments in wind power electricity generation in Ontario," Energy Economics, Elsevier, vol. 103(C).
    2. Benitez, Liliana E. & Benitez, Pablo C. & van Kooten, G. Cornelis, 2008. "The economics of wind power with energy storage," Energy Economics, Elsevier, vol. 30(4), pages 1973-1989, July.
    3. Manolakos, D & Papadakis, G & Papantonis, D & Kyritsis, S, 2004. "A stand-alone photovoltaic power system for remote villages using pumped water energy storage," Energy, Elsevier, vol. 29(1), pages 57-69.
    4. Chatzivasileiadi, Aikaterini & Ampatzi, Eleni & Knight, Ian, 2013. "Characteristics of electrical energy storage technologies and their applications in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 814-830.
    5. Ming, Zeng & Junjie, Feng & Song, Xue & Zhijie, Wang & Xiaoli, Zhu & Yuejin, Wang, 2013. "Development of China's pumped storage plant and related policy analysis," Energy Policy, Elsevier, vol. 61(C), pages 104-113.
    6. Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," American Economic Review, American Economic Association, vol. 101(3), pages 238-241, May.
    7. Chang, Martin K. & Eichman, Joshua D. & Mueller, Fabian & Samuelsen, Scott, 2013. "Buffering intermittent renewable power with hydroelectric generation: A case study in California," Applied Energy, Elsevier, vol. 112(C), pages 1-11.
    8. Belderbos, Andreas & Delarue, Erik & Kessels, Kris & D'haeseleer, William, 2017. "Levelized cost of storage — Introducing novel metrics," Energy Economics, Elsevier, vol. 67(C), pages 287-299.
    9. Caralis, George & Diakoulaki, Danae & Yang, Peijin & Gao, Zhiqiu & Zervos, Arthouros & Rados, Kostas, 2014. "Profitability of wind energy investments in China using a Monte Carlo approach for the treatment of uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 224-236.
    10. Bradbury, Kyle & Pratson, Lincoln & Patiño-Echeverri, Dalia, 2014. "Economic viability of energy storage systems based on price arbitrage potential in real-time U.S. electricity markets," Applied Energy, Elsevier, vol. 114(C), pages 512-519.
    11. Belanger, Camille & Gagnon, Luc, 2002. "Adding wind energy to hydropower," Energy Policy, Elsevier, vol. 30(14), pages 1279-1284, November.
    12. Papaefthymiou, Stefanos V. & Papathanassiou, Stavros A., 2014. "Optimum sizing of wind-pumped-storage hybrid power stations in island systems," Renewable Energy, Elsevier, vol. 64(C), pages 187-196.
    13. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni & Daskalakis, George, 2013. "Modeling of financial incentives for investments in energy storage systems that promote the large-scale integration of wind energy," Applied Energy, Elsevier, vol. 105(C), pages 138-154.
    14. G. Cornelis van Kooten, 2016. "California Dreaming: The Economics of Renewable Energy," Working Papers 2016-05, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
    2. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    3. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    4. Dhillon, Javed & Kumar, Arun & Singal, S.K., 2014. "Optimization methods applied for Wind–PSP operation and scheduling under deregulated market: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 682-700.
    5. Binama, Maxime & Kan, Kan & Chen, Hui-Xiang & Zheng, Yuan & Zhou, Daqing & Su, Wen-Tao & Muhirwa, Alexis & Ntayomba, James, 2021. "Flow instability transferability characteristics within a reversible pump turbine (RPT) under large guide vane opening (GVO)," Renewable Energy, Elsevier, vol. 179(C), pages 285-307.
    6. Denault, Michel & Dupuis, Debbie & Couture-Cardinal, Sébastien, 2009. "Complementarity of hydro and wind power: Improving the risk profile of energy inflows," Energy Policy, Elsevier, vol. 37(12), pages 5376-5384, December.
    7. Romeiro, Diogo Lisbona & Almeida, Edmar Luiz Fagundes de & Losekann, Luciano, 2020. "Systemic value of electricity sources – What we can learn from the Brazilian experience?," Energy Policy, Elsevier, vol. 138(C).
    8. Genc, Talat S. & Reynolds, Stanley S., 2019. "Who should own a renewable technology? Ownership theory and an application," International Journal of Industrial Organization, Elsevier, vol. 63(C), pages 213-238.
    9. Hirth, Lion & Ueckerdt, Falko & Edenhofer, Ottmar, 2015. "Integration costs revisited – An economic framework for wind and solar variability," Renewable Energy, Elsevier, vol. 74(C), pages 925-939.
    10. Shcherbakova, Anastasia & Kleit, Andrew & Cho, Joohyun, 2014. "The value of energy storage in South Korea’s electricity market: A Hotelling approach," Applied Energy, Elsevier, vol. 125(C), pages 93-102.
    11. Odeh, Rodrigo Pérez & Watts, David, 2019. "Impacts of wind and solar spatial diversification on its market value: A case study of the Chilean electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 442-461.
    12. Tang, Renbo & Yang, Jiandong & Yang, Weijia & Zou, Jin & Lai, Xu, 2019. "Dynamic regulation characteristics of pumped-storage plants with two generating units sharing common conduits and busbar for balancing variable renewable energy," Renewable Energy, Elsevier, vol. 135(C), pages 1064-1077.
    13. Javier L'opez Prol & Wolf-Peter Schill, 2020. "The Economics of Variable Renewables and Electricity Storage," Papers 2012.15371, arXiv.org.
    14. Gebretsadik, Yohannes & Fant, Charles & Strzepek, Kenneth & Arndt, Channing, 2016. "Optimized reservoir operation model of regional wind and hydro power integration case study: Zambezi basin and South Africa," Applied Energy, Elsevier, vol. 161(C), pages 574-582.
    15. Ghaib, Karim & Ben-Fares, Fatima-Zahrae, 2018. "Power-to-Methane: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 433-446.
    16. Parkhurst, Kristen M. & Saffron, Christopher M. & Miller, Raymond O., 2016. "An energy analysis comparing biomass torrefaction in depots to wind with natural gas combustion for electricity generation," Applied Energy, Elsevier, vol. 179(C), pages 171-181.
    17. Scorah, Hugh & Sopinka, Amy & van Kooten, G. Cornelis, 2012. "The economics of storage, transmission and drought: integrating variable wind power into spatially separated electricity grids," Energy Economics, Elsevier, vol. 34(2), pages 536-541.
    18. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    19. Das, Trishna & Krishnan, Venkat & McCalley, James D., 2015. "Assessing the benefits and economics of bulk energy storage technologies in the power grid," Applied Energy, Elsevier, vol. 139(C), pages 104-118.
    20. Mauritzen, Johannes, 2012. "Dead Battery? Wind Power, the Spot Market, and Hydro Power Interaction in the Nordic Electricity Market," Working Paper Series 908, Research Institute of Industrial Economics.

    More about this item

    Keywords

    Economic analysis; Electricity; Ontario; Pumped hydro storage; Wind power;
    All these keywords.

    JEL classification:

    • O55 - Economic Development, Innovation, Technological Change, and Growth - - Economywide Country Studies - - - Africa
    • D61 - Microeconomics - - Welfare Economics - - - Allocative Efficiency; Cost-Benefit Analysis
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qed:dpaper:4605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mark Babcock (email available below). General contact details of provider: https://edirc.repec.org/data/qedquca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.