IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v44y2015icp586-598.html
   My bibliography  Save this article

Pumped hydro energy storage system: A technological review

Author

Listed:
  • Rehman, Shafiqur
  • Al-Hadhrami, Luai M.
  • Alam, Md. Mahbub

Abstract

The pumped hydro energy storage (PHES) is a well-established and commercially-acceptable technology for utility-scale electricity storage and has been used since as early as the 1890s. Hydro power is not only a renewable and sustainable energy source, but its flexibility and storage capacity also make it possible to improve grid stability and to support the deployment of other intermittent renewable energy sources such as wind and solar. As a result, a renewed interest in PHES and a demand for the rehabilitation of old small hydro power plants are emerging globally. With regard to PHES, advances in turbine design are required to enhance plant performance and flexibility and new strategies for optimizing storage capacity and for maximizing plant profitability in the deregulated energy market. In the early 2000s, this technology has again emerged as an economically and technologically acceptable option for peak load shaving and wind and solar energy storage for power quality assurance. Furthermore, renewable energy sources due to their fluctuating nature cannot maintain or regulate continuous supply of power and hence require bulk electricity storage. The present study aims at reviewing the existing global PHES capacities, technological development, and hybrid systems (wind-hydro, solar pv-hydro, and wind-pv-hydro) and recommending the best possible options. The review explores that PHES is the most suitable technology for small autonomous island grids and massive energy storage, where the energy efficiency of PHES varies in practice between 70% and 80% with some claiming up to 87%. Around the world, PHES size mostly nestles in the range of 1000–1500MW, being as large as 2000–3000MW. On the other hand, photovoltaic based pumped storage systems have been used for very small scale (load of few houses) only.

Suggested Citation

  • Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
  • Handle: RePEc:eee:rensus:v:44:y:2015:i:c:p:586-598
    DOI: 10.1016/j.rser.2014.12.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115000106
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.12.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bueno, C. & Carta, J.A., 2006. "Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 312-340, August.
    2. Hedegaard, K. & Meibom, P., 2012. "Wind power impacts and electricity storage – A time scale perspective," Renewable Energy, Elsevier, vol. 37(1), pages 318-324.
    3. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G. & Zervos, Arthouros & Papantonis, Dimitris & Voutsinas, Spiros, 2008. "Pumped storage systems introduction in isolated power production systems," Renewable Energy, Elsevier, vol. 33(3), pages 467-490.
    4. Omer, E. & Guetta, R. & Ioslovich, I. & Gutman, P.O. & Borshchevsky, M., 2008. "“Energy Tower” combined with pumped storage and desalination: Optimal design and analysis," Renewable Energy, Elsevier, vol. 33(4), pages 597-607.
    5. Kaldellis, J. K. & Kavadias, K. A., 2001. "Optimal wind-hydro solution for Aegean Sea islands' electricity-demand fulfilment," Applied Energy, Elsevier, vol. 70(4), pages 333-354, December.
    6. Yang, Chi-Jen & Jackson, Robert B., 2011. "Opportunities and barriers to pumped-hydro energy storage in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 839-844, January.
    7. Benitez, Liliana E. & Benitez, Pablo C. & van Kooten, G. Cornelis, 2008. "The economics of wind power with energy storage," Energy Economics, Elsevier, vol. 30(4), pages 1973-1989, July.
    8. Glasnovic, Zvonimir & Margeta, Jure, 2009. "The features of sustainable Solar Hydroelectric Power Plant," Renewable Energy, Elsevier, vol. 34(7), pages 1742-1751.
    9. Steffen, Bjarne, 2012. "Prospects for pumped-hydro storage in Germany," Energy Policy, Elsevier, vol. 45(C), pages 420-429.
    10. Nazari, M.E. & Ardehali, M.M. & Jafari, S., 2010. "Pumped-storage unit commitment with considerations for energy demand, economics, and environmental constraints," Energy, Elsevier, vol. 35(10), pages 4092-4101.
    11. Caralis, G. & Rados, K. & Zervos, A., 2010. "On the market of wind with hydro-pumped storage systems in autonomous Greek islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2221-2226, October.
    12. Caralis, G. & Papantonis, D. & Zervos, A., 2012. "The role of pumped storage systems towards the large scale wind integration in the Greek power supply system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2558-2565.
    13. Connolly, D. & Lund, H. & Mathiesen, B.V. & Pican, E. & Leahy, M., 2012. "The technical and economic implications of integrating fluctuating renewable energy using energy storage," Renewable Energy, Elsevier, vol. 43(C), pages 47-60.
    14. Weisser, Daniel & Garcia, Raquel S., 2005. "Instantaneous wind energy penetration in isolated electricity grids: concepts and review," Renewable Energy, Elsevier, vol. 30(8), pages 1299-1308.
    15. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G. & Stefanakis, Ioannis & Spanos, Petros & Stefanakis, Nikos, 2013. "Technical details regarding the design, the construction and the operation of seawater pumped storage systems," Energy, Elsevier, vol. 55(C), pages 619-630.
    16. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2015. "Pumped storage-based standalone photovoltaic power generation system: Modeling and techno-economic optimization," Applied Energy, Elsevier, vol. 137(C), pages 649-659.
    17. Kabouris, John & Perrakis, Kostis, 2000. "Wind electricity in Greece: recent developments, problems and prospects," Renewable Energy, Elsevier, vol. 21(3), pages 417-432.
    18. Hoogwijk, Monique & van Vuuren, Detlef & de Vries, Bert & Turkenburg, Wim, 2007. "Exploring the impact on cost and electricity production of high penetration levels of intermittent electricity in OECD Europe and the USA, results for wind energy," Energy, Elsevier, vol. 32(8), pages 1381-1402.
    19. Anagnostopoulos, John S. & Papantonis, Dimitris E., 2012. "Study of pumped storage schemes to support high RES penetration in the electric power system of Greece," Energy, Elsevier, vol. 45(1), pages 416-423.
    20. Dursun, Bahtiyar & Alboyaci, Bora & Gokcol, Cihan, 2011. "Optimal wind-hydro solution for the Marmara region of Turkey to meet electricity demand," Energy, Elsevier, vol. 36(2), pages 864-872.
    21. Manolakos, D & Papadakis, G & Papantonis, D & Kyritsis, S, 2004. "A stand-alone photovoltaic power system for remote villages using pumped water energy storage," Energy, Elsevier, vol. 29(1), pages 57-69.
    22. Papathanassiou, Stavros A. & Boulaxis, Nikos G., 2006. "Power limitations and energy yield evaluation for wind farms operating in island systems," Renewable Energy, Elsevier, vol. 31(4), pages 457-479.
    23. Hoicka, Christina E. & Rowlands, Ian H., 2011. "Solar and wind resource complementarity: Advancing options for renewable electricity integration in Ontario, Canada," Renewable Energy, Elsevier, vol. 36(1), pages 97-107.
    24. Ming, Zeng & Kun, Zhang & Daoxin, Liu, 2013. "Overall review of pumped-hydro energy storage in China: Status quo, operation mechanism and policy barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 35-43.
    25. Kaldellis, J.K. & Zafirakis, D. & Kavadias, K., 2009. "Techno-economic comparison of energy storage systems for island autonomous electrical networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 378-392, February.
    26. Bakos, George C., 2002. "Feasibility study of a hybrid wind/hydro power-system for low-cost electricity production," Applied Energy, Elsevier, vol. 72(3-4), pages 599-608, July.
    27. Dursun, Bahtiyar & Alboyaci, Bora, 2010. "The contribution of wind-hydro pumped storage systems in meeting Turkey's electric energy demand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1979-1988, September.
    28. Marco Semadeni, 2003. "Energy storage as an essential part of sustainable energy systems," CEPE Working paper series 03-24, CEPE Center for Energy Policy and Economics, ETH Zurich.
    29. Punys, Petras & Baublys, Raimundas & Kasiulis, Egidijus & Vaisvila, Andrius & Pelikan, Bernhard & Steller, Janusz, 2013. "Assessment of renewable electricity generation by pumped storage power plants in EU Member States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 190-200.
    30. Ming, Zeng & Junjie, Feng & Song, Xue & Zhijie, Wang & Xiaoli, Zhu & Yuejin, Wang, 2013. "Development of China's pumped storage plant and related policy analysis," Energy Policy, Elsevier, vol. 61(C), pages 104-113.
    31. Ibrahim, H. & Younès, R. & Ilinca, A. & Dimitrova, M. & Perron, J., 2010. "Study and design of a hybrid wind-diesel-compressed air energy storage system for remote areas," Applied Energy, Elsevier, vol. 87(5), pages 1749-1762, May.
    32. Zeng, Ming & Li, Chen & Zhou, Lisha, 2013. "Progress and prospective on the police system of renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 36-44.
    33. Anagnostopoulos, J.S. & Papantonis, D.E., 2008. "Simulation and size optimization of a pumped–storage power plant for the recovery of wind-farms rejected energy," Renewable Energy, Elsevier, vol. 33(7), pages 1685-1694.
    34. Murage, Maureen Wanjiku & Anderson, C. Lindsay, 2014. "Contribution of pumped hydro storage to integration of wind power in Kenya: An optimal control approach," Renewable Energy, Elsevier, vol. 63(C), pages 698-707.
    35. Ding, Huajie & Hu, Zechun & Song, Yonghua, 2012. "Stochastic optimization of the daily operation of wind farm and pumped-hydro-storage plant," Renewable Energy, Elsevier, vol. 48(C), pages 571-578.
    36. Kapsali, M. & Anagnostopoulos, J.S. & Kaldellis, J.K., 2012. "Wind powered pumped-hydro storage systems for remote islands: A complete sensitivity analysis based on economic perspectives," Applied Energy, Elsevier, vol. 99(C), pages 430-444.
    37. Kear, Gareth & Chapman, Ralph, 2013. "‘Reserving judgement’: Perceptions of pumped hydro and utility-scale batteries for electricity storage and reserve generation in New Zealand," Renewable Energy, Elsevier, vol. 57(C), pages 249-261.
    38. Ridgway, S.L. & Dooley, J.L. & Hammond, R.Philip, 1980. "Large energy storage systems for utilities," Applied Energy, Elsevier, vol. 6(2), pages 133-142, March.
    39. Margeta, Jure & Glasnovic, Zvonimir, 2010. "Feasibility of the green energy production by hybrid solar + hydro power system in Europe and similar climate areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1580-1590, August.
    40. Connolly, D. & Lund, H. & Finn, P. & Mathiesen, B.V. & Leahy, M., 2011. "Practical operation strategies for pumped hydroelectric energy storage (PHES) utilising electricity price arbitrage," Energy Policy, Elsevier, vol. 39(7), pages 4189-4196, July.
    41. Kaldellis, J.K. & Kavadias, K.A. & Filios, A.E., 2009. "A new computational algorithm for the calculation of maximum wind energy penetration in autonomous electrical generation systems," Applied Energy, Elsevier, vol. 86(7-8), pages 1011-1023, July.
    42. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G. & Pavlopoylos, Kosmas & Stamataki, Sofia & Dimitrelou, Irene & Stefanakis, Ioannis & Spanos, Petros, 2012. "Introduction of a wind powered pumped storage system in the isolated insular power system of Karpathos–Kasos," Applied Energy, Elsevier, vol. 97(C), pages 38-48.
    43. Ardizzon, G. & Cavazzini, G. & Pavesi, G., 2014. "A new generation of small hydro and pumped-hydro power plants: Advances and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 746-761.
    44. Tuohy, A. & O'Malley, M., 2011. "Pumped storage in systems with very high wind penetration," Energy Policy, Elsevier, vol. 39(4), pages 1965-1974, April.
    45. Vieira, F. & Ramos, H.M., 2008. "Hybrid solution and pump-storage optimization in water supply system efficiency: A case study," Energy Policy, Elsevier, vol. 36(11), pages 4142-4148, November.
    46. Reuter, Wolf Heinrich & Fuss, Sabine & Szolgayová, Jana & Obersteiner, Michael, 2012. "Investment in wind power and pumped storage in a real options model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2242-2248.
    47. Tsioliaridou, E. & Bakos, G.C. & Stadler, M., 2006. "A new energy planning methodology for the penetration of renewable energy technologies in electricity sector--application for the island of Crete," Energy Policy, Elsevier, vol. 34(18), pages 3757-3764, December.
    48. Kapsali, M. & Kaldellis, J.K., 2010. "Combining hydro and variable wind power generation by means of pumped-storage under economically viable terms," Applied Energy, Elsevier, vol. 87(11), pages 3475-3485, November.
    49. Yin, Jun lian & Wang, De zhong & Kim, Yu-Taek & Lee, Young-Ho, 2014. "A hybrid energy storage system using pump compressed air and micro-hydro turbine," Renewable Energy, Elsevier, vol. 65(C), pages 117-122.
    50. Varkani, Ali Karimi & Daraeepour, Ali & Monsef, Hassan, 2011. "A new self-scheduling strategy for integrated operation of wind and pumped-storage power plants in power markets," Applied Energy, Elsevier, vol. 88(12), pages 5002-5012.
    51. Papaefthymiou, Stefanos V. & Papathanassiou, Stavros A., 2014. "Optimum sizing of wind-pumped-storage hybrid power stations in island systems," Renewable Energy, Elsevier, vol. 64(C), pages 187-196.
    52. Kaldellis, J. K., 2004. "Investigation of Greek wind energy market time-evolution," Energy Policy, Elsevier, vol. 32(7), pages 865-879, May.
    53. Salgi, Georges & Lund, Henrik, 2008. "System behaviour of compressed-air energy-storage in Denmark with a high penetration of renewable energy sources," Applied Energy, Elsevier, vol. 85(4), pages 182-189, April.
    54. He, Wei, 1997. "A simulation model for evaluating Tianhuangping pumped storage hydro-plant," Renewable Energy, Elsevier, vol. 11(2), pages 263-266.
    55. Jaramillo, O.A. & Borja, M.A. & Huacuz, J.M., 2004. "Using hydropower to complement wind energy: a hybrid system to provide firm power," Renewable Energy, Elsevier, vol. 29(11), pages 1887-1909.
    56. Sivakumar, N. & Das, Devadutta & Padhy, N.P. & Senthil Kumar, A.R. & Bisoyi, Nibedita, 2013. "Status of pumped hydro-storage schemes and its future in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 208-213.
    57. Kaldellis, J.K. & Kapsali, M. & Kavadias, K.A., 2010. "Energy balance analysis of wind-based pumped hydro storage systems in remote island electrical networks," Applied Energy, Elsevier, vol. 87(8), pages 2427-2437, August.
    58. Kaldellis, J.K. & Zafirakis, D., 2007. "Present situation and future prospects of electricity generation in Aegean Archipelago islands," Energy Policy, Elsevier, vol. 35(9), pages 4623-4639, September.
    59. Connolly, D. & MacLaughlin, S. & Leahy, M., 2010. "Development of a computer program to locate potential sites for pumped hydroelectric energy storage," Energy, Elsevier, vol. 35(1), pages 375-381.
    60. Deane, J.P. & Ó Gallachóir, B.P. & McKeogh, E.J., 2010. "Techno-economic review of existing and new pumped hydro energy storage plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1293-1302, May.
    61. Kaldellis, J.K., 2008. "The wind potential impact on the maximum wind energy penetration in autonomous electrical grids," Renewable Energy, Elsevier, vol. 33(7), pages 1665-1677.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    2. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G., 2014. "Seawater pumped storage systems and offshore wind parks in islands with low onshore wind potential. A fundamental case study," Energy, Elsevier, vol. 66(C), pages 470-486.
    3. Ardizzon, G. & Cavazzini, G. & Pavesi, G., 2014. "A new generation of small hydro and pumped-hydro power plants: Advances and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 746-761.
    4. Dhillon, Javed & Kumar, Arun & Singal, S.K., 2014. "Optimization methods applied for Wind–PSP operation and scheduling under deregulated market: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 682-700.
    5. Kaldellis, J.K. & Kapsali, M. & Kavadias, K.A., 2010. "Energy balance analysis of wind-based pumped hydro storage systems in remote island electrical networks," Applied Energy, Elsevier, vol. 87(8), pages 2427-2437, August.
    6. Kapsali, M. & Kaldellis, J.K., 2010. "Combining hydro and variable wind power generation by means of pumped-storage under economically viable terms," Applied Energy, Elsevier, vol. 87(11), pages 3475-3485, November.
    7. Kapsali, M. & Anagnostopoulos, J.S. & Kaldellis, J.K., 2012. "Wind powered pumped-hydro storage systems for remote islands: A complete sensitivity analysis based on economic perspectives," Applied Energy, Elsevier, vol. 99(C), pages 430-444.
    8. Pérez-Díaz, Juan I. & Chazarra, M. & García-González, J. & Cavazzini, G. & Stoppato, A., 2015. "Trends and challenges in the operation of pumped-storage hydropower plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 767-784.
    9. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G. & Stefanakis, Ioannis & Spanos, Petros & Stefanakis, Nikos, 2013. "Technical details regarding the design, the construction and the operation of seawater pumped storage systems," Energy, Elsevier, vol. 55(C), pages 619-630.
    10. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni & Daskalakis, George, 2013. "Modeling of financial incentives for investments in energy storage systems that promote the large-scale integration of wind energy," Applied Energy, Elsevier, vol. 105(C), pages 138-154.
    11. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2015. "Pumped storage-based standalone photovoltaic power generation system: Modeling and techno-economic optimization," Applied Energy, Elsevier, vol. 137(C), pages 649-659.
    12. Papaefthymiou, Stefanos V. & Papathanassiou, Stavros A., 2014. "Optimum sizing of wind-pumped-storage hybrid power stations in island systems," Renewable Energy, Elsevier, vol. 64(C), pages 187-196.
    13. Katsaprakakis, Dimitris Al., 2016. "Hybrid power plants in non-interconnected insular systems," Applied Energy, Elsevier, vol. 164(C), pages 268-283.
    14. Connolly, D. & Lund, H. & Mathiesen, B.V. & Pican, E. & Leahy, M., 2012. "The technical and economic implications of integrating fluctuating renewable energy using energy storage," Renewable Energy, Elsevier, vol. 43(C), pages 47-60.
    15. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G. & Pavlopoylos, Kosmas & Stamataki, Sofia & Dimitrelou, Irene & Stefanakis, Ioannis & Spanos, Petros, 2012. "Introduction of a wind powered pumped storage system in the isolated insular power system of Karpathos–Kasos," Applied Energy, Elsevier, vol. 97(C), pages 38-48.
    16. Kaldellis, J.K. & Kapsali, M. & Tiligadas, D., 2012. "Presentation of a stochastic model estimating the wind energy contribution in remote island electrical networks," Applied Energy, Elsevier, vol. 97(C), pages 68-76.
    17. Jurasz, Jakub & Mikulik, Jerzy & Krzywda, Magdalena & Ciapała, Bartłomiej & Janowski, Mirosław, 2018. "Integrating a wind- and solar-powered hybrid to the power system by coupling it with a hydroelectric power station with pumping installation," Energy, Elsevier, vol. 144(C), pages 549-563.
    18. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    19. Guittet, Mélanie & Capezzali, Massimiliano & Gaudard, Ludovic & Romerio, Franco & Vuille, François & Avellan, François, 2016. "Study of the drivers and asset management of pumped-storage power plants historical and geographical perspective," Energy, Elsevier, vol. 111(C), pages 560-579.
    20. Koohi-Kamali, Sam & Tyagi, V.V. & Rahim, N.A. & Panwar, N.L. & Mokhlis, H., 2013. "Emergence of energy storage technologies as the solution for reliable operation of smart power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 135-165.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:44:y:2015:i:c:p:586-598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.