IDEAS home Printed from https://ideas.repec.org/p/cee/wpcepe/03-24.html
   My bibliography  Save this paper

Energy storage as an essential part of sustainable energy systems

Author

Listed:
  • Marco Semadeni

    (Center for Energy Policy and Economics CEPE, Department of Management, Technology and Economics, ETH Zurich, Switzerland)

Abstract

Energy supply is an intricate task that provides a reliable energy service to consumers throughout the year. Import dependencies, seasonal differences in energy supply and use, and daily fluctuations in consumption require a sophisticated management of energy resources and conversion, or energy distribution and resource intermittency in order to guarantee continuous energy services throughout all sectors. Therein, energy storage plays a critical role. Energy storage balances the daily fluctuations and seasonal differences of energy resource availability, which results from physical, economical or geo-political constraints. A strongly variable energy demand through day and night also requires energy to be stored in adequate amounts. In particular, short- and mid-term storage levels out or buffers energy output gaps or overflows. Energy is mostly stored in between conversion steps from primary to secondary energy and secondary to final energy. Often rechargeable systems are used to refill the storage capacity when energy demand is low and energy services are not needed. Primary storage such as large crude oil and natural gas storage tanks are essential for the functioning of a country's energy system. Storage of water in reservoirs behind dams is valuable for selling hydropower electricity at the right time or in seasons of increased demand. Secondary or final storage systems, for instance in tanks or in batteries, are crucial for emergency situations, uninterrupted industrial production, long-distance mobility or to secure energy services at home. Storage systems are engineered to hold adequate amounts of mechanical, thermo-physical, electro-chemical or chemical energy for prolonged periods of time. Energy storage systems should be quickly chargeable and should have a large energy storage capacity, but at the same time should also have high rates of recovery and high yields of energy regain. Final energy in factories or households is often stored in tanks as chemical energy in the form of heating oil or natural gas. Thermo-physical energy in the form of steam, hot or cold water, or thermo-oils is also used. For some special applications or for safety reasons energy may be stored electrochemically in batteries or physically in the form of pressurized air. Other storage systems are related to electricity and apply mechanical storage in the form of spinning turbines or flywheels, physical storage in the form of water in reservoirs in highland terrains, or electrostatic storage in super-capacitors. Research is extensive in the area of energy storage since an increase of new renewable energy technologies such as wind and solar is expected to increase fluctuations and deviations from grid parameters. These need too be balanced out using reserve power capacities, grid level power storage capabilities, distributed generation units connected to the grid, and possibly appropriate new grid architectures.

Suggested Citation

  • Marco Semadeni, 2003. "Energy storage as an essential part of sustainable energy systems," CEPE Working paper series 03-24, CEPE Center for Energy Policy and Economics, ETH Zurich.
  • Handle: RePEc:cee:wpcepe:03-24
    as

    Download full text from publisher

    File URL: http://www.cepe.ethz.ch/publications/workingPapers/CEPE_WP24.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cornelia Luchsinger & Rafael Lalive & Jörg Wild, 2003. "Do Wages Rise with Job Seniority? The Swiss Case," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 139(II), pages 207-229, June.
    2. Andrea Scheller, "undated". "Researchers' Use of Indicators. Interim Report of The Indicator Project," CEPE Working paper series 99-01, CEPE Center for Energy Policy and Economics, ETH Zurich.
    3. K Christen & Martin Jakob & Eberhard Jochem, 2000. "Grenzkosten bei forcierten Energiesparmassnahmen in Bereich Wohngebäude," CEPE Working paper series 00-06, CEPE Center for Energy Policy and Economics, ETH Zurich.
    4. Cornelia Luchsinger & Adrian Müller, 2003. "Incentive Compatible Extraction of Natural Resource Rent," CEPE Working paper series 03-21, CEPE Center for Energy Policy and Economics, ETH Zurich.
    5. Silvia Banfi & Massimo Filippini & Adrian Müller, 2003. "Rent of Hydropower Generation in Switzerland in a Liberalized Market," CEPE Working paper series 01-20, CEPE Center for Energy Policy and Economics, ETH Zurich.
    6. Bernard Aebischer & Alois Huser, 2000. "Monatlicher Verbrauch von Heizöl extraleicht im Dienstleistungssektor," CEPE Working paper series 00-04, CEPE Center for Energy Policy and Economics, ETH Zurich.
    7. Filippini, Massimo & Wild, Jorg, 2001. "Regional differences in electricity distribution costs and their consequences for yardstick regulation of access prices," Energy Economics, Elsevier, vol. 23(4), pages 477-488, July.
    8. Silvia Banfi & Massimo Filippini & Lester C. Hunt, 2003. "Fuel tourism in border regions," CEPE Working paper series 03-23, CEPE Center for Energy Policy and Economics, ETH Zurich.
    9. David Goldblatt, 1999. "Northern Consumption: A Critical Review of Issues, Driving Forces, Disciplinary Approaches and Critiques," CEPE Working paper series 99-03, CEPE Center for Energy Policy and Economics, ETH Zurich.
    10. Martin Jakob & A Primas & Eberhard Jochem, 2001. "Erneuerungsverhalten im Bereich Wohngebäude - Auswertung des Umfrage-Pretests," CEPE Working paper series 01-09, CEPE Center for Energy Policy and Economics, ETH Zurich.
    11. Massimo Filippini & Jörg Wild & Michael Kuenzle, 2001. "Scale and cost efficiency in the Swiss electricity distribution industry: evidence from a frontier cost approach," CEPE Working paper series 01-08, CEPE Center for Energy Policy and Economics, ETH Zurich.
    12. Shonali Pachauri, "undated". "A First Step to Constructing Energy Consumption Indicators for India. Interim Report of The Indicator Project," CEPE Working paper series 99-02, CEPE Center for Energy Policy and Economics, ETH Zurich.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reinhard Madlener & Stefan Vögtli, 2006. "Diffusion of bioenergy in urban areas: socio-economic analysis of the planned Swiss wood-fired cogeneration plant in Basel," CEPE Working paper series 06-53, CEPE Center for Energy Policy and Economics, ETH Zurich.
    2. Madlener, Reinhard & Koller, Martin, 2007. "Economic and CO2 mitigation impacts of promoting biomass heating systems: An input-output study for Vorarlberg, Austria," Energy Policy, Elsevier, vol. 35(12), pages 6021-6035, December.
    3. Shonali Pachauri & Daniel Spreng, 2003. "Energy use and energy access in relation to poverty," CEPE Working paper series 03-25, CEPE Center for Energy Policy and Economics, ETH Zurich.
    4. Silvia Banfi & Massimo Filippini & Andrea Horehájová, 2012. "Using a choice experiment to estimate the benefits of a reduction of externalities in urban areas with special focus on electrosmog," Applied Economics, Taylor & Francis Journals, vol. 44(3), pages 387-397, January.
    5. Reinhard Madlener & Carmenza Robledo & Bart Muys & Bo Hektor & Julije Domac, 2003. "A Sustainability Framework for Enhancing the Long-Term Success of LULUCF Projects," CEPE Working paper series 03-29, CEPE Center for Energy Policy and Economics, ETH Zurich.
    6. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
    7. Silvia Banfi & Massimo Filippini & Andrea Horehájová, 2007. "Hedonic Price Functions for Zurich and Lugano with Special Focus on Electrosmog," CEPE Working paper series 07-57, CEPE Center for Energy Policy and Economics, ETH Zurich.
    8. Connolly, D. & Lund, H. & Mathiesen, B.V. & Pican, E. & Leahy, M., 2012. "The technical and economic implications of integrating fluctuating renewable energy using energy storage," Renewable Energy, Elsevier, vol. 43(C), pages 47-60.
    9. Klein, Daniel R. & Olonscheck, Mady & Walther, Carsten & Kropp, Jürgen P., 2013. "Susceptibility of the European electricity sector to climate change," Energy, Elsevier, vol. 59(C), pages 183-193.
    10. Reinhard Madlener & Carlos Henggeler Antunes & Luis C. Dias, 2006. "Multi-Criteria versus Data Envelopment Analysis for Assessing the Performance of Biogas Plants," CEPE Working paper series 06-49, CEPE Center for Energy Policy and Economics, ETH Zurich.
    11. Kumbaroglu, Gürkan & Madlener, Reinhard & Demirel, Mustafa, 2008. "A real options evaluation model for the diffusion prospects of new renewable power generation technologies," Energy Economics, Elsevier, vol. 30(4), pages 1882-1908, July.
    12. Kentaka Aruga, 2003. "Differences in Characteristics ofReligious Groups in India: As Seen From Household Survey Data," CEPE Working paper series 03-26, CEPE Center for Energy Policy and Economics, ETH Zurich.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silvia Banfi & Massimo Filippini & Andrea Horehájová, 2007. "Hedonic Price Functions for Zurich and Lugano with Special Focus on Electrosmog," CEPE Working paper series 07-57, CEPE Center for Energy Policy and Economics, ETH Zurich.
    2. Reinhard Madlener & Carlos Henggeler Antunes & Luis C. Dias, 2006. "Multi-Criteria versus Data Envelopment Analysis for Assessing the Performance of Biogas Plants," CEPE Working paper series 06-49, CEPE Center for Energy Policy and Economics, ETH Zurich.
    3. Reinhard Madlener & Stefan Vögtli, 2006. "Diffusion of bioenergy in urban areas: socio-economic analysis of the planned Swiss wood-fired cogeneration plant in Basel," CEPE Working paper series 06-53, CEPE Center for Energy Policy and Economics, ETH Zurich.
    4. Kumbaroglu, Gürkan & Madlener, Reinhard & Demirel, Mustafa, 2008. "A real options evaluation model for the diffusion prospects of new renewable power generation technologies," Energy Economics, Elsevier, vol. 30(4), pages 1882-1908, July.
    5. Silvia Banfi & Massimo Filippini & Andrea Horehájová, 2012. "Using a choice experiment to estimate the benefits of a reduction of externalities in urban areas with special focus on electrosmog," Applied Economics, Taylor & Francis Journals, vol. 44(3), pages 387-397, January.
    6. Madlener, Reinhard & Koller, Martin, 2007. "Economic and CO2 mitigation impacts of promoting biomass heating systems: An input-output study for Vorarlberg, Austria," Energy Policy, Elsevier, vol. 35(12), pages 6021-6035, December.
    7. Daniel Spreng & Marco Semadeni, 2001. "Energie, Umwelt und die 2000 Watt Gesellschaft," CEPE Working paper series 01-11, CEPE Center for Energy Policy and Economics, ETH Zurich.
    8. Reinhard Madlener & Carmenza Robledo & Bart Muys & Bo Hektor & Julije Domac, 2003. "A Sustainability Framework for Enhancing the Long-Term Success of LULUCF Projects," CEPE Working paper series 03-29, CEPE Center for Energy Policy and Economics, ETH Zurich.
    9. Eberhard Jochem, 2005. "An Agenda for Energy and Material Efficiency Policy – An Element of Technology Policy for a More Sustainable Use of Natural Resources," CEPE Working paper series 05-40, CEPE Center for Energy Policy and Economics, ETH Zurich.
    10. Adrian Müller, 2002. "Finding Groups in Large Data Sets," CEPE Working paper series 02-18, CEPE Center for Energy Policy and Economics, ETH Zurich.
    11. Marco Semadeni, 2002. "Long-Term Energy Scenarios: Information on Aspects of Sustainable Energy Supply as a Prelude to Participatory Sessions," CEPE Working paper series 02-17, CEPE Center for Energy Policy and Economics, ETH Zurich.
    12. Filippini, Massimo & Pachauri, Shonali, 2004. "Elasticities of electricity demand in urban Indian households," Energy Policy, Elsevier, vol. 32(3), pages 429-436, February.
    13. Shonali Pachauri & Daniel Spreng, 2003. "Energy use and energy access in relation to poverty," CEPE Working paper series 03-25, CEPE Center for Energy Policy and Economics, ETH Zurich.
    14. Kentaka Aruga, 2003. "Differences in Characteristics ofReligious Groups in India: As Seen From Household Survey Data," CEPE Working paper series 03-26, CEPE Center for Energy Policy and Economics, ETH Zurich.
    15. Gürkan Kumbaroglu & Reinhard Madlener, 2001. "A Description of the Hybrid Bottom-Up CGE Model SCREEN with an Application to Swiss Climate Policy Analysis," CEPE Working paper series 01-10, CEPE Center for Energy Policy and Economics, ETH Zurich.
    16. Kopsakangas-Savolainen, Maria & Svento, Rauli, 2008. "Estimation of cost-effectiveness of the Finnish electricity distribution utilities," Energy Economics, Elsevier, vol. 30(2), pages 212-229, March.
    17. Jamasb, T. & Söderberg, M., 2009. "Yardstick and Ex-post Regulation by Norm Model: Empirical Equivalence, Pricing Effect, and Performance in Sweeden," Cambridge Working Papers in Economics 0908, Faculty of Economics, University of Cambridge.
    18. Ali Akkemik, K., 2009. "Cost function estimates, scale economies and technological progress in the Turkish electricity generation sector," Energy Policy, Elsevier, vol. 37(1), pages 204-213, January.
    19. Ajayi, Victor & Weyman-Jones, Thomas & Glass, Anthony, 2017. "Cost efficiency and electricity market structure: A case study of OECD countries," Energy Economics, Elsevier, vol. 65(C), pages 283-291.
    20. Christian von Hirschhausen & Andreas Kappeler, 2004. "Productivity Analysis of German Electricity Distribution Utilities," Discussion Papers of DIW Berlin 418, DIW Berlin, German Institute for Economic Research.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cee:wpcepe:03-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Carlos Ordas (email available below). General contact details of provider: https://edirc.repec.org/data/cepetch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.