IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v45y2012i1p416-423.html
   My bibliography  Save this article

Study of pumped storage schemes to support high RES penetration in the electric power system of Greece

Author

Listed:
  • Anagnostopoulos, John S.
  • Papantonis, Dimitris E.

Abstract

Energy storage constitutes an effective way to manage excess RES production, and pumped storage is a suitable and mature solution for large storage capacities. The present study aims to investigate the performance of a pumped storage unit introduced in a conventional Hydroelectric Power Plant in Greece. At first, the plant operation and the electric grid data for a reference period of one year are used to compute the time variation of water inflow into the dam, and to estimate the RES production rejections depending on the installed power. Next, a pumping station powered by the rejected RES production and raising water from an adjacent downstream reservoir is modeled. Various scenarios concerning the pumping station power rate and feeding program are examined. The operation of the combined system is simulated in detail and the energy results are analyzed. Also, an economic evaluation is carried out based on current financial conditions in Greece. The results showed that a considerable amount of excess RES production can be stored, but the economic viability of the investment depends on some critical parameters, which are identified. Certain guidelines concerning the optimum sizing and operation strategy of the pumped storage scheme are finally extracted.

Suggested Citation

  • Anagnostopoulos, John S. & Papantonis, Dimitris E., 2012. "Study of pumped storage schemes to support high RES penetration in the electric power system of Greece," Energy, Elsevier, vol. 45(1), pages 416-423.
  • Handle: RePEc:eee:energy:v:45:y:2012:i:1:p:416-423
    DOI: 10.1016/j.energy.2012.02.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212001260
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.02.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benitez, Liliana E. & Benitez, Pablo C. & van Kooten, G. Cornelis, 2008. "The economics of wind power with energy storage," Energy Economics, Elsevier, vol. 30(4), pages 1973-1989, July.
    2. Dursun, Bahtiyar & Alboyaci, Bora & Gokcol, Cihan, 2011. "Optimal wind-hydro solution for the Marmara region of Turkey to meet electricity demand," Energy, Elsevier, vol. 36(2), pages 864-872.
    3. Anagnostopoulos, J.S. & Papantonis, D.E., 2008. "Simulation and size optimization of a pumped–storage power plant for the recovery of wind-farms rejected energy," Renewable Energy, Elsevier, vol. 33(7), pages 1685-1694.
    4. Tuohy, A. & O'Malley, M., 2011. "Pumped storage in systems with very high wind penetration," Energy Policy, Elsevier, vol. 39(4), pages 1965-1974, April.
    5. Kaldellis, J.K. & Kapsali, M. & Kavadias, K.A., 2010. "Energy balance analysis of wind-based pumped hydro storage systems in remote island electrical networks," Applied Energy, Elsevier, vol. 87(8), pages 2427-2437, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
    2. Ardizzon, G. & Cavazzini, G. & Pavesi, G., 2014. "A new generation of small hydro and pumped-hydro power plants: Advances and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 746-761.
    3. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G. & Stefanakis, Ioannis & Spanos, Petros & Stefanakis, Nikos, 2013. "Technical details regarding the design, the construction and the operation of seawater pumped storage systems," Energy, Elsevier, vol. 55(C), pages 619-630.
    4. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni & Daskalakis, George, 2013. "Modeling of financial incentives for investments in energy storage systems that promote the large-scale integration of wind energy," Applied Energy, Elsevier, vol. 105(C), pages 138-154.
    5. Connolly, D. & Lund, H. & Mathiesen, B.V. & Pican, E. & Leahy, M., 2012. "The technical and economic implications of integrating fluctuating renewable energy using energy storage," Renewable Energy, Elsevier, vol. 43(C), pages 47-60.
    6. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G., 2014. "Seawater pumped storage systems and offshore wind parks in islands with low onshore wind potential. A fundamental case study," Energy, Elsevier, vol. 66(C), pages 470-486.
    7. Kapsali, M. & Kaldellis, J.K., 2010. "Combining hydro and variable wind power generation by means of pumped-storage under economically viable terms," Applied Energy, Elsevier, vol. 87(11), pages 3475-3485, November.
    8. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G. & Pavlopoylos, Kosmas & Stamataki, Sofia & Dimitrelou, Irene & Stefanakis, Ioannis & Spanos, Petros, 2012. "Introduction of a wind powered pumped storage system in the isolated insular power system of Karpathos–Kasos," Applied Energy, Elsevier, vol. 97(C), pages 38-48.
    9. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    10. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    11. Nyamdash, Batsaikhan & Denny, Eleanor, 2013. "The impact of electricity storage on wholesale electricity prices," Energy Policy, Elsevier, vol. 58(C), pages 6-16.
    12. Segurado, R. & Madeira, J.F.A. & Costa, M. & Duić, N. & Carvalho, M.G., 2016. "Optimization of a wind powered desalination and pumped hydro storage system," Applied Energy, Elsevier, vol. 177(C), pages 487-499.
    13. Kapsali, M. & Anagnostopoulos, J.S., 2017. "Investigating the role of local pumped-hydro energy storage in interconnected island grids with high wind power generation," Renewable Energy, Elsevier, vol. 114(PB), pages 614-628.
    14. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni, 2015. "Embodied CO2 emissions and cross-border electricity trade in Europe: Rebalancing burden sharing with energy storage," Applied Energy, Elsevier, vol. 143(C), pages 283-300.
    15. Dhillon, Javed & Kumar, Arun & Singal, S.K., 2014. "Optimization methods applied for Wind–PSP operation and scheduling under deregulated market: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 682-700.
    16. Foley, A.M. & Leahy, P.G. & Li, K. & McKeogh, E.J. & Morrison, A.P., 2015. "A long-term analysis of pumped hydro storage to firm wind power," Applied Energy, Elsevier, vol. 137(C), pages 638-648.
    17. Milad Ghaisi & Milad Rahmani & Pedram Gharghabi & Ali Zoghi & Seyed Hossein Hosseinian, 2017. "Scheduling a Wind Hydro-Pumped-Storage Unit Considering the Economical Optimization," Post-Print hal-01478231, HAL.
    18. Kaldellis, J.K. & Kapsali, M. & Kavadias, K.A., 2010. "Energy balance analysis of wind-based pumped hydro storage systems in remote island electrical networks," Applied Energy, Elsevier, vol. 87(8), pages 2427-2437, August.
    19. Simoglou, Christos K. & Bakirtzis, Emmanouil A. & Biskas, Pandelis N. & Bakirtzis, Anastasios G., 2016. "Optimal operation of insular electricity grids under high RES penetration," Renewable Energy, Elsevier, vol. 86(C), pages 1308-1316.
    20. Kaldellis, J.K. & Kapsali, M. & Tiligadas, D., 2012. "Presentation of a stochastic model estimating the wind energy contribution in remote island electrical networks," Applied Energy, Elsevier, vol. 97(C), pages 68-76.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:45:y:2012:i:1:p:416-423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.