IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v363y2024ics0306261924004641.html
   My bibliography  Save this article

Will artificial intelligence make energy cleaner? Evidence of nonlinearity

Author

Listed:
  • Lee, Chien-Chiang
  • Yan, Jingyang

Abstract

Energy plays a vital part in stimulating economic progress, and the shift towards a cleaner energy system is highly significant for ensuring the sustainable development of the economy. China's energy structure urgently needs to be transitioned. The fast advancement and implementation of artificial intelligence (AI) has provided a new and important tool for promoting the transition of energy structure. So, what is the relationship between the application of artificial intelligence and the transition of the energy structure? This research introduces artificial intelligence into the energy sector, focusing on the relationship between artificial intelligence and energy transition. Since nonlinear models are better able to study the complex effects and phase differences of artificial intelligence. Using China's provincial panel data spanning from 2006 to 2019, this study employs nonlinear modeling to explore the stage differences in the process of AI in facilitating energy structure transformation. This paper derives the following findings based on empirical research. First, there is a U-shaped relationship between artificial intelligence and the transition of energy structure. Specifically, before the inflection point, the initial application of artificial intelligence, artificial intelligence may adversely impact energy transition. When the inflection point is passed, AI will help facilitate the energy transition. Second, the U-shaped relationship between AI and energy transition is more pronounced in coastal and non-resource-based regions. Third, energy intensity, government investment in science and technology, and informatization will moderate the U-shaped relationship between artificial intelligence and energy transition, changing the steepness of the original U-shaped relationship and even reversing it. Hence, it is imperative to effectively utilize the technological benefits of artificial intelligence through the development patterns and distinctive features of different regions, thereby facilitating the smooth transition of the energy structure.

Suggested Citation

  • Lee, Chien-Chiang & Yan, Jingyang, 2024. "Will artificial intelligence make energy cleaner? Evidence of nonlinearity," Applied Energy, Elsevier, vol. 363(C).
  • Handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924004641
    DOI: 10.1016/j.apenergy.2024.123081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924004641
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Daron Acemoglu & Pascual Restrepo, 2018. "The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment," American Economic Review, American Economic Association, vol. 108(6), pages 1488-1542, June.
    2. Mohsin, Muhammad & Hanif, Imran & Taghizadeh-Hesary, Farhad & Abbas, Qaiser & Iqbal, Wasim, 2021. "Nexus between energy efficiency and electricity reforms: A DEA-Based way forward for clean power development," Energy Policy, Elsevier, vol. 149(C).
    3. Liu, Yunqiang & Zhu, Jialing & Li, Eldon Y. & Meng, Zhiyi & Song, Yan, 2020. "Environmental regulation, green technological innovation, and eco-efficiency: The case of Yangtze river economic belt in China," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    4. Chen, Huangxin & Shi, Yi & Zhao, Xin, 2022. "Investment in renewable energy resources, sustainable financial inclusion and energy efficiency: A case of US economy," Resources Policy, Elsevier, vol. 77(C).
    5. Dong, Kangyin & Ren, Xiaohang & Zhao, Jun, 2021. "How does low-carbon energy transition alleviate energy poverty in China? A nonparametric panel causality analysis," Energy Economics, Elsevier, vol. 103(C).
    6. Rafiq, Shuddhasattwa & Salim, Ruhul & Nielsen, Ingrid, 2016. "Urbanization, openness, emissions, and energy intensity: A study of increasingly urbanized emerging economies," Energy Economics, Elsevier, vol. 56(C), pages 20-28.
    7. Li, Yaya & Zhang, Yuru & Pan, An & Han, Minchun & Veglianti, Eleonora, 2022. "Carbon emission reduction effects of industrial robot applications: Heterogeneity characteristics and influencing mechanisms," Technology in Society, Elsevier, vol. 70(C).
    8. Shahbaz, Muhammad & Wang, Jianda & Dong, Kangyin & Zhao, Jun, 2022. "The impact of digital economy on energy transition across the globe: The mediating role of government governance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    9. Du, Longzheng & Lin, Weifen, 2022. "Does the application of industrial robots overcome the Solow paradox? Evidence from China," Technology in Society, Elsevier, vol. 68(C).
    10. Zou, Ran & Yang, Jun & Feng, Chao, 2023. "Does informatization alleviate energy poverty? A global perspective," Energy Economics, Elsevier, vol. 126(C).
    11. Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Amir Mansouri, Seyed & Jurado, Francisco, 2022. "Day-ahead scheduling of 100% isolated communities under uncertainties through a novel stochastic-robust model," Applied Energy, Elsevier, vol. 328(C).
    12. Wang, En-Ze & Lee, Chien-Chiang, 2022. "The impact of clean energy consumption on economic growth in China: Is environmental regulation a curse or a blessing?," International Review of Economics & Finance, Elsevier, vol. 77(C), pages 39-58.
    13. Chang, Lei & Taghizadeh-Hesary, Farhad & Mohsin, Muhammad, 2023. "Role of artificial intelligence on green economic development: Joint determinates of natural resources and green total factor productivity," Resources Policy, Elsevier, vol. 82(C).
    14. Aslam, Sheraz & Herodotou, Herodotos & Mohsin, Syed Muhammad & Javaid, Nadeem & Ashraf, Nouman & Aslam, Shahzad, 2021. "A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    15. Wurlod, Jules-Daniel & Noailly, Joëlle, 2018. "The impact of green innovation on energy intensity: An empirical analysis for 14 industrial sectors in OECD countries," Energy Economics, Elsevier, vol. 71(C), pages 47-61.
    16. Tong, Ziqiang & Mansouri, Seyed Amir & Huang, Shoujun & Rezaee Jordehi, Ahmad & Tostado-Véliz, Marcos, 2023. "The role of smart communities integrated with renewable energy resources, smart homes and electric vehicles in providing ancillary services: A tri-stage optimization mechanism," Applied Energy, Elsevier, vol. 351(C).
    17. Bölük, Gülden & Mert, Mehmet, 2014. "Fossil & renewable energy consumption, GHGs (greenhouse gases) and economic growth: Evidence from a panel of EU (European Union) countries," Energy, Elsevier, vol. 74(C), pages 439-446.
    18. Parteka, Aleksandra & Kordalska, Aleksandra, 2023. "Artificial intelligence and productivity: global evidence from AI patent and bibliometric data," Technovation, Elsevier, vol. 125(C).
    19. Huang, Junbing & Du, Dan & Tao, Qizhi, 2017. "An analysis of technological factors and energy intensity in China," Energy Policy, Elsevier, vol. 109(C), pages 1-9.
    20. Lee, Chien-Chiang & Wang, Fuhao & Chang, Yu-Fang, 2023. "Does green finance promote renewable energy? Evidence from China," Resources Policy, Elsevier, vol. 82(C).
    21. Wang, Jianlong & Wang, Weilong & Liu, Yong & Wu, Haitao, 2023. "Can industrial robots reduce carbon emissions? Based on the perspective of energy rebound effect and labor factor flow in China," Technology in Society, Elsevier, vol. 72(C).
    22. Gozgor, Giray & Paramati, Sudharshan Reddy, 2022. "Does energy diversification cause an economic slowdown? Evidence from a newly constructed energy diversification index," Energy Economics, Elsevier, vol. 109(C).
    23. Daron Acemoglu & Pascual Restrepo, 2020. "Robots and Jobs: Evidence from US Labor Markets," Journal of Political Economy, University of Chicago Press, vol. 128(6), pages 2188-2244.
    24. Huang, Geng & He, Ling-Yun & Lin, Xi, 2022. "Robot adoption and energy performance: Evidence from Chinese industrial firms," Energy Economics, Elsevier, vol. 107(C).
    25. Amri, Fethi & Zaied, Younes Ben & Lahouel, Bechir Ben, 2019. "ICT, total factor productivity, and carbon dioxide emissions in Tunisia," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 212-217.
    26. Zhu, Bo & Deng, Yuanyue & Lin, Renda & Hu, Xin & Chen, Pingshe, 2022. "Energy security: Does systemic risk spillover matter? Evidence from China," Energy Economics, Elsevier, vol. 114(C).
    27. Yaya Li & Yuru Zhang & An Pan & Minchun Han & Eleonora Veglianti, 2022. "Carbon emission reduction effects of industrial robot applications: Heterogeneity characteristics and influencing mechanisms," Post-Print hal-04522085, HAL.
    28. Weiming Zhang & Jiachao Peng & Lian Zhang, 2023. "Disruptive Displacement: The Impacts of Industrial Robots on the Energy Industry’s International Division of Labor from a Technological Complexity View," Energies, MDPI, vol. 16(8), pages 1-19, April.
    29. Lee, Chien-Chiang & Yuan, Zihao & Wang, Qiaoru, 2022. "How does information and communication technology affect energy security? International evidence," Energy Economics, Elsevier, vol. 109(C).
    30. Qin, Meng & Hu, Wei & Qi, Xinzhou & Chang, Tsangyao, 2024. "Do the benefits outweigh the disadvantages? Exploring the role of artificial intelligence in renewable energy," Energy Economics, Elsevier, vol. 131(C).
    31. Wang, En-Ze & Lee, Chien-Chiang & Li, Yaya, 2022. "Assessing the impact of industrial robots on manufacturing energy intensity in 38 countries," Energy Economics, Elsevier, vol. 105(C).
    32. Feng Dong & Shengnan Zhang & Jiao Zhu & Jiaojiao Sun, 2021. "The Impact of the Integrated Development of AI and Energy Industry on Regional Energy Industry: A Case of China," IJERPH, MDPI, vol. 18(17), pages 1-24, August.
    33. Nicola Jones, 2018. "How to stop data centres from gobbling up the world’s electricity," Nature, Nature, vol. 561(7722), pages 163-166, September.
    34. Yang, Lisha & Li, Zhi, 2017. "Technology advance and the carbon dioxide emission in China – Empirical research based on the rebound effect," Energy Policy, Elsevier, vol. 101(C), pages 150-161.
    35. Matt Taddy, 2018. "The Technological Elements of Artificial Intelligence," NBER Working Papers 24301, National Bureau of Economic Research, Inc.
    36. Lee, Chien-Chiang & Xing, Wenwu & Lee, Chi-Chuan, 2022. "The impact of energy security on income inequality: The key role of economic development," Energy, Elsevier, vol. 248(C).
    37. Xue, Yan & Tang, Chang & Wu, Haitao & Liu, Jianmin & Hao, Yu, 2022. "The emerging driving force of energy consumption in China: Does digital economy development matter?," Energy Policy, Elsevier, vol. 165(C).
    38. David H. Autor, 2015. "Why Are There Still So Many Jobs? The History and Future of Workplace Automation," Journal of Economic Perspectives, American Economic Association, vol. 29(3), pages 3-30, Summer.
    39. Daron Acemoglu & Pascual Restrepo, 2017. "Secular Stagnation? The Effect of Aging on Economic Growth in the Age of Automation," American Economic Review, American Economic Association, vol. 107(5), pages 174-179, May.
    40. Kopka, Alexander & Grashof, Nils, 2022. "Artificial intelligence: Catalyst or barrier on the path to sustainability?," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    41. Zhang, Dongyang & Kong, Qunxi, 2022. "Green energy transition and sustainable development of energy firms: An assessment of renewable energy policy," Energy Economics, Elsevier, vol. 111(C).
    42. Lee, Chien-Chiang & Qin, Shuai & Li, Yaya, 2022. "Does industrial robot application promote green technology innovation in the manufacturing industry?," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    43. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    44. Lee, Chien-Chiang & Wang, Fuhao, 2022. "How does digital inclusive finance affect carbon intensity?," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 174-190.
    45. Focacci, Chiara Natalie, 2021. "Technological unemployment, robotisation, and green deal: A story of unstable spillovers in China and South Korea (2008–2018)," Technology in Society, Elsevier, vol. 64(C).
    46. Lee, Chien-Chiang & Wang, Chang-song, 2022. "Financial development, technological innovation and energy security: Evidence from Chinese provincial experience," Energy Economics, Elsevier, vol. 112(C).
    47. Richard F. J. Haans & Constant Pieters & Zi-Lin He, 2016. "Thinking about U: Theorizing and testing U- and inverted U-shaped relationships in strategy research," Strategic Management Journal, Wiley Blackwell, vol. 37(7), pages 1177-1195, July.
    48. Chu, Chien-Chi & Yunis, Manal & Huang, Xiying & Mi, Yingye & Wu, Yida & Ji, Yun, 2024. "Examining the nexus of mineral resources, technology adoption, and economic expansion in advancing sustainable development in OECD economies," Resources Policy, Elsevier, vol. 91(C).
    49. Doytch, Nadia & Elheddad, Mohamed & Hammoudeh, Shawkat, 2023. "The financial Kuznets curve of energy consumption: Global evidence," Energy Policy, Elsevier, vol. 177(C).
    50. Ajagekar, Akshay & You, Fengqi, 2022. "Quantum computing and quantum artificial intelligence for renewable and sustainable energy: A emerging prospect towards climate neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    51. Matt Taddy, 2018. "The Technological Elements of Artificial Intelligence," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 61-87, National Bureau of Economic Research, Inc.
    52. Li, Guoxiang & Wu, Haoyue & Jiang, Jieshu & Zong, Qingqing, 2023. "Digital finance and the low-carbon energy transition (LCET) from the perspective of capital-biased technical progress," Energy Economics, Elsevier, vol. 120(C).
    53. Ricardo Vinuesa & Hossein Azizpour & Iolanda Leite & Madeline Balaam & Virginia Dignum & Sami Domisch & Anna Felländer & Simone Daniela Langhans & Max Tegmark & Francesco Fuso Nerini, 2020. "The role of artificial intelligence in achieving the Sustainable Development Goals," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    54. Ang, B.W. & Choong, W.L. & Ng, T.S., 2015. "Energy security: Definitions, dimensions and indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1077-1093.
    55. Yang, Yingchun & Liu, Jianghua & Lin, Yingying & Li, Qiongyuan, 2019. "The impact of urbanization on China’s residential energy consumption," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 170-182.
    56. Lee, Chien-Chiang & Wang, Fuhao & Chang, Yu-Fang, 2023. "Towards net-zero emissions: Can green bond policy promote green innovation and green space?," Energy Economics, Elsevier, vol. 121(C).
    57. Lee, Chien-Chiang & Yan, Jingyang & Wang, Fuhao, 2024. "Impact of population aging on food security in the context of artificial intelligence: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao, Weiliang & Weng, Shimei & Chen, Xueli & ALHussan, Fawaz Baddar & Song, Malin, 2024. "Artificial intelligence-driven transformations in low-carbon energy structure: Evidence from China," Energy Economics, Elsevier, vol. 136(C).
    2. Li, Lanbing & Zhao, Jiawei & Yang, Yuhan & Ma, Dan, 2025. "Artificial intelligence and green development well-being: Effects and mechanisms in China," Energy Economics, Elsevier, vol. 141(C).
    3. Zhou, Wei & Zhuang, Yan & Chen, Yan, 2024. "How does artificial intelligence affect pollutant emissions by improving energy efficiency and developing green technology," Energy Economics, Elsevier, vol. 131(C).
    4. Lin, Boqiang & Xu, Chongchong, 2024. "The effects of industrial robots on firm energy intensity: From the perspective of technological innovation and electrification," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    5. Zhao, Qian & Wang, Lu & Stan, Sebastian-Emanuel & Mirza, Nawazish, 2024. "Can artificial intelligence help accelerate the transition to renewable energy?," Energy Economics, Elsevier, vol. 134(C).
    6. Zhang, Weike & Zeng, Ming, 2024. "Is artificial intelligence a curse or a blessing for enterprise energy intensity? Evidence from China," Energy Economics, Elsevier, vol. 134(C).
    7. Lee, Chien-Chiang & Zou, Jinyang & Chen, Pei-Fen, 2025. "The impact of artificial intelligence on the energy consumption of corporations: The role of human capital," Energy Economics, Elsevier, vol. 143(C).
    8. Liu, Yingji & Shen, Fangbing & Guo, Ju & Hu, Guoheng & Song, Yuegang, 2025. "Can artificial intelligence technology improve companies' capacity for green innovation? Evidence from listed companies in China," Energy Economics, Elsevier, vol. 143(C).
    9. Lee, Chien-Chiang & Yan, Jingyang & Wang, Fuhao, 2024. "Impact of population aging on food security in the context of artificial intelligence: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    10. Lin, Boqiang & Xu, Chongchong, 2024. "Enhancing energy-environmental performance through industrial intelligence: Insights from Chinese prefectural-level cities," Applied Energy, Elsevier, vol. 365(C).
    11. Chen, Yang & Cheng, Liang & Lee, Chien-Chiang, 2022. "How does the use of industrial robots affect the ecological footprint? International evidence," Ecological Economics, Elsevier, vol. 198(C).
    12. Niu, Xiaotong & Lin, Changao & He, Shanshan & Yang, Youcai, 2025. "Artificial intelligence and enterprise pollution emissions: From the perspective of energy transition," Energy Economics, Elsevier, vol. 144(C).
    13. Lee, Chien-Chiang & Xuan, Chengnan & Wang, Fuhao, 2024. "Natural resources and green economic growth: The role of artificial intelligence," Resources Policy, Elsevier, vol. 98(C).
    14. Wang, Jianlong & Wang, Weilong & Liu, Yong & Wu, Haitao, 2023. "Can industrial robots reduce carbon emissions? Based on the perspective of energy rebound effect and labor factor flow in China," Technology in Society, Elsevier, vol. 72(C).
    15. Liu, Yunxin & Cao, Yuqiang & Lu, Meiting & Shan, Yaowen & Xu, Jiangang, 2024. "Automating efficiency: The impact of industrial robots on labor investment in China," Economic Modelling, Elsevier, vol. 140(C).
    16. Zhong, Wenli & Liu, Yang & Dong, Kangyin & Ni, Guohua, 2024. "Assessing the synergistic effects of artificial intelligence on pollutant and carbon emission mitigation in China," Energy Economics, Elsevier, vol. 138(C).
    17. Ding, Tao & Li, Hao & Liu, Li & Feng, Kui, 2024. "An inquiry into the nexus between artificial intelligence and energy poverty in the light of global evidence," Energy Economics, Elsevier, vol. 136(C).
    18. Zhang, Xiaojing & Khan, Khalid & Shao, Xuefeng & Oprean-Stan, Camelia & Zhang, Qian, 2024. "The rising role of artificial intelligence in renewable energy development in China," Energy Economics, Elsevier, vol. 132(C).
    19. Li, Yaya & Cobbinah, Joana & Abban, Olivier Joseph & Veglianti, Eleonora, 2023. "Does green manufacturing technology innovation decrease energy intensity for sustainable development?," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1010-1025.
    20. Long, Guoren & Duan, Dingyun & Wang, Hua & Chen, Shaojian, 2024. "The impact of industrial robots on low-carbon green performance: Evidence from the belt and road initiative countries," Technology in Society, Elsevier, vol. 79(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924004641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.