IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v198y2022ics0921800922001458.html
   My bibliography  Save this article

How does the use of industrial robots affect the ecological footprint? International evidence

Author

Listed:
  • Chen, Yang
  • Cheng, Liang
  • Lee, Chien-Chiang

Abstract

While the use of industrial robots (UIR) promotes economic growth, it inevitably also has an impact on the ecological environment. This research explores the relationship between UIR and ecological footprint based on data of 72 countries from 1993 to 2019. First, whether based on overall or sub-industry data we confirm that UIR reduces the ecological footprint. After considering a series of robustness tests such as sample self-selection bias and endogeneity, this conclusion still holds. Second, the mediation effect model shows that UIR reduces the ecological footprint through the time saving effect, green employment effect, and energy upgrading effect and increases the ecological footprint through the industry driving effect, and that the impact of UIR's reduction of the ecological footprint is dominant. Third, the moderating effect model shows that as the levels of economic development and human capital increase, UIR can more effectively reduce the ecological footprint. Fourth, in OECD countries and at a high quantile of the ecological footprint, the effect of UIR on reducing the ecological footprint is more obvious. This paper presents a new perspective for UIR to achieve economic development and ecological protection at the same time. Governments of various countries should actively seize the opportunity to develop industrial robots, continue to increase human capital investment, and accelerate the upgrade of energy sectors.

Suggested Citation

  • Chen, Yang & Cheng, Liang & Lee, Chien-Chiang, 2022. "How does the use of industrial robots affect the ecological footprint? International evidence," Ecological Economics, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:ecolec:v:198:y:2022:i:c:s0921800922001458
    DOI: 10.1016/j.ecolecon.2022.107483
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800922001458
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2022.107483?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daron Acemoglu & Pascual Restrepo, 2020. "The wrong kind of AI? Artificial intelligence and the future of labour demand," Cambridge Journal of Regions, Economy and Society, Cambridge Political Economy Society, vol. 13(1), pages 25-35.
    2. Joseph Zeira, 1998. "Workers, Machines, and Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1091-1117.
    3. Baloch, Muhammad Awais & Danish, & Khan, Salah Ud-Din & Ulucak, Zübeyde Şentürk, 2020. "Poverty and vulnerability of environmental degradation in Sub-Saharan African countries: what causes what?," Structural Change and Economic Dynamics, Elsevier, vol. 54(C), pages 143-149.
    4. Francesco Chiacchio & Georgios Petropoulos & David Pichler, 2018. "The impact of industrial robots on EU employment and wages- A local labour market approach," Working Papers 25186, Bruegel.
    5. Guy Michaels & Ashwini Natraj & John Van Reenen, 2010. "Has ICT Polarized Skill Demand? Evidence from Eleven Countries over 25 Years," CEP Discussion Papers dp0987, Centre for Economic Performance, LSE.
    6. Cecere, Grazia & Mazzanti, Massimiliano, 2017. "Green jobs and eco-innovations in European SMEs," Resource and Energy Economics, Elsevier, vol. 49(C), pages 86-98.
    7. David E. Bloom & Mathew McKenna & Klaus Prettner, 2018. "Demography, Unemployment, Automation, and Digitalization: Implications for the Creation of (Decent) Jobs, 2010–2030," NBER Working Papers 24835, National Bureau of Economic Research, Inc.
    8. Du, Longzheng & Lin, Weifen, 2022. "Does the application of industrial robots overcome the Solow paradox? Evidence from China," Technology in Society, Elsevier, vol. 68(C).
    9. Daron Acemoglu & Claire Lelarge & Pascual Restrepo, 2020. "Competing with Robots: Firm-Level Evidence from France," AEA Papers and Proceedings, American Economic Association, vol. 110, pages 383-388, May.
    10. Liu, Min & Lee, Chien-Chiang, 2021. "Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting," Energy Economics, Elsevier, vol. 103(C).
    11. Thompson, Samuel B., 2011. "Simple formulas for standard errors that cluster by both firm and time," Journal of Financial Economics, Elsevier, vol. 99(1), pages 1-10, January.
    12. Abid, Mehdi & sakrafi, Habib & Gheraia, Zouheyr & Abdelli, Hanane, 2022. "Does renewable energy consumption affect ecological footprints in Saudi Arabia? A bootstrap causality test," Renewable Energy, Elsevier, vol. 189(C), pages 813-821.
    13. David H. Autor & David Dorn, 2013. "The Growth of Low-Skill Service Jobs and the Polarization of the US Labor Market," American Economic Review, American Economic Association, vol. 103(5), pages 1553-1597, August.
    14. Wang, En-Ze & Lee, Chien-Chiang, 2022. "The impact of clean energy consumption on economic growth in China: Is environmental regulation a curse or a blessing?," International Review of Economics & Finance, Elsevier, vol. 77(C), pages 39-58.
    15. Südekum, Jens & Dauth, Wolfgang & Findeisen, Sebastian & Woessner, Nicole, 2017. "German Robots – The Impact of Industrial Robots on Workers," CEPR Discussion Papers 12306, C.E.P.R. Discussion Papers.
    16. Albertini, Julien & Auray, Stéphane & Bouakez, Hafedh & Eyquem, Aurélien, 2021. "Taking off into the wind: Unemployment risk and state-Dependent government spending multipliers," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 990-1007.
    17. Daron Acemoglu & Pascual Restrepo, 2017. "Robots and Jobs: Evidence from US Labor Markets," Boston University - Department of Economics - Working Papers Series dp-297, Boston University - Department of Economics.
    18. David H. Autor & Frank Levy & Richard J. Murnane, 2003. "The skill content of recent technological change: an empirical exploration," Proceedings, Federal Reserve Bank of San Francisco, issue Nov.
    19. Ahmed, Zahoor & Asghar, Muhammad Mansoor & Malik, Muhammad Nasir & Nawaz, Kishwar, 2020. "Moving towards a sustainable environment: The dynamic linkage between natural resources, human capital, urbanization, economic growth, and ecological footprint in China," Resources Policy, Elsevier, vol. 67(C).
    20. Zahoor Ahmed & Muhammad Mansoor Asghar & Muhammad Nasir Malik & Kishwar Nawaz, 2020. "Moving towards a sustainable environment: The dynamic linkage between natural resources, human capital, urbanization, economic growth, and ecological footprint in China," Post-Print hal-03557938, HAL.
    21. Huang, Geng & He, Ling-Yun & Lin, Xi, 2022. "Robot adoption and energy performance: Evidence from Chinese industrial firms," Energy Economics, Elsevier, vol. 107(C).
    22. de Vries, Gaaitzen J. & Gentile, Elisabetta & Miroudot, Sébastien & Wacker, Konstantin M., 2020. "The rise of robots and the fall of routine jobs," Labour Economics, Elsevier, vol. 66(C).
    23. Ivan A. Canay, 2011. "A simple approach to quantile regression for panel data," Econometrics Journal, Royal Economic Society, vol. 14(3), pages 368-386, October.
    24. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    25. Wang, En-Ze & Lee, Chien-Chiang & Li, Yaya, 2022. "Assessing the impact of industrial robots on manufacturing energy intensity in 38 countries," Energy Economics, Elsevier, vol. 105(C).
    26. James H. Stock & Motohiro Yogo, 2002. "Testing for Weak Instruments in Linear IV Regression," NBER Technical Working Papers 0284, National Bureau of Economic Research, Inc.
    27. Arik Levinson, 2009. "Technology, International Trade, and Pollution from US Manufacturing," American Economic Review, American Economic Association, vol. 99(5), pages 2177-2192, December.
    28. Prettner, Klaus, 2019. "A Note On The Implications Of Automation For Economic Growth And The Labor Share," Macroeconomic Dynamics, Cambridge University Press, vol. 23(3), pages 1294-1301, April.
    29. Shen, Jim Huangnan & Long, Zhiming & Lee, Chien-Chiang & Zhang, Jun, 2022. "Comparative advantage, endowment structure, and trade imbalances," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 365-375.
    30. Savina Gygli & Florian Haelg & Niklas Potrafke & Jan-Egbert Sturm, 2019. "Publisher Correction to: The KOF Globalisation Index – revisited," The Review of International Organizations, Springer, vol. 14(3), pages 575-575, September.
    31. Haldar, Anasuya & Sethi, Narayan, 2022. "Environmental effects of Information and Communication Technology - Exploring the roles of renewable energy, innovation, trade and financial development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    32. Danish & Recep Ulucak & Salah Ud‐Din Khan & Muhammad Awais Baloch & Nan Li, 2020. "Mitigation pathways toward sustainable development: Is there any trade‐off between environmental regulation and carbon emissions reduction?," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 813-822, July.
    33. Daron Acemoglu & Pascual Restrepo, 2020. "Robots and Jobs: Evidence from US Labor Markets," Journal of Political Economy, University of Chicago Press, vol. 128(6), pages 2188-2244.
    34. Acemoglu, Daron & Autor, David, 2011. "Skills, Tasks and Technologies: Implications for Employment and Earnings," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 12, pages 1043-1171, Elsevier.
    35. Opoku, Eric Evans Osei & Boachie, Micheal Kofi, 2020. "The environmental impact of industrialization and foreign direct investment," Energy Policy, Elsevier, vol. 137(C).
    36. Axel Dreher, 2006. "Does globalization affect growth? Evidence from a new index of globalization," Applied Economics, Taylor & Francis Journals, vol. 38(10), pages 1091-1110.
    37. Yang Chen & Chien-Chiang Lee & Ming Chen, 2022. "Ecological footprint, human capital, and urbanization," Energy & Environment, , vol. 33(3), pages 487-510, May.
    38. Jason Furman & Robert Seamans, 2019. "AI and the Economy," Innovation Policy and the Economy, University of Chicago Press, vol. 19(1), pages 161-191.
    39. Khan, Zeeshan & Hussain, Muzzammil & Shahbaz, Muhammad & Yang, Siqun & Jiao, Zhilun, 2020. "Natural resource abundance, technological innovation, and human capital nexus with financial development: A case study of China," Resources Policy, Elsevier, vol. 65(C).
    40. Lenzen, Manfred & Murray, Shauna A., 2001. "A modified ecological footprint method and its application to Australia," Ecological Economics, Elsevier, vol. 37(2), pages 229-255, May.
    41. Juan F. Jimeno, 2019. "Fewer babies and more robots: economic growth in a new era of demographic and technological changes," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 10(2), pages 93-114, June.
    42. Daron Acemoglu & Pascual Restrepo, 2018. "The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment," American Economic Review, American Economic Association, vol. 108(6), pages 1488-1542, June.
    43. Malayaranjan Sahoo & Narayan Sethi, 2022. "The dynamic impact of urbanization, structural transformation, and technological innovation on ecological footprint and PM2.5: evidence from newly industrialized countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4244-4277, March.
    44. Jung, Jin Hwa & Lim, Dong-Geon, 2020. "Industrial robots, employment growth, and labor cost: A simultaneous equation analysis," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    45. Tang, Chengjian & Huang, Keqi & Liu, Qiren, 2021. "Robots and skill-biased development in employment structure: Evidence from China," Economics Letters, Elsevier, vol. 205(C).
    46. Bogataj, David & Battini, Daria & Calzavara, Martina & Persona, Alessandro, 2019. "The ageing workforce challenge: Investments in collaborative robots or contribution to pension schemes, from the multi-echelon perspective," International Journal of Production Economics, Elsevier, vol. 210(C), pages 97-106.
    47. Ji, Qiang & Zhang, Dayong, 2019. "How much does financial development contribute to renewable energy growth and upgrading of energy structure in China?," Energy Policy, Elsevier, vol. 128(C), pages 114-124.
    48. Lyu, Wenjing & Liu, Jin, 2021. "Artificial Intelligence and emerging digital technologies in the energy sector," Applied Energy, Elsevier, vol. 303(C).
    49. Wu, Yizhong & Lee, Chien-Chiang & Lee, Chi-Chuan & Peng, Diyun, 2022. "Geographic proximity and corporate investment efficiency: Evidence from high-speed rail construction in China," Journal of Banking & Finance, Elsevier, vol. 140(C).
    50. Pata, Ugur Korkut, 2021. "Linking renewable energy, globalization, agriculture, CO2 emissions and ecological footprint in BRIC countries: A sustainability perspective," Renewable Energy, Elsevier, vol. 173(C), pages 197-208.
    51. Singh, Vanita & Babbar, Karan, 2022. "Empowered but abused? A moderated mediation analysis to explore the relationship between wife's relative resources, relational empowerment and physical abuse," Social Science & Medicine, Elsevier, vol. 296(C).
    52. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    53. Zhou, Fengxiu & Wen, Huwei & Lee, Chien-Chiang, 2022. "Broadband infrastructure and export growth," Telecommunications Policy, Elsevier, vol. 46(5).
    54. Dekle, Robert, 2020. "Robots and industrial labor: Evidence from Japan," Journal of the Japanese and International Economies, Elsevier, vol. 58(C).
    55. Chontanawat, Jaruwan & Hunt, Lester C. & Pierse, Richard, 2008. "Does energy consumption cause economic growth?: Evidence from a systematic study of over 100 countries," Journal of Policy Modeling, Elsevier, vol. 30(2), pages 209-220.
    56. Boza, Pal & Evgeniou, Theodoros, 2021. "Artificial intelligence to support the integration of variable renewable energy sources to the power system," Applied Energy, Elsevier, vol. 290(C).
    57. Terry Barker, 1995. "Taxing Pollution Instead of Employment: Greenhouse Gas Abatement through Fiscal Policy in the UK," Energy & Environment, , vol. 6(1), pages 1-29, February.
    58. Lee, Chien-Chiang & Yuan, Zihao & Wang, Qiaoru, 2022. "How does information and communication technology affect energy security? International evidence," Energy Economics, Elsevier, vol. 109(C).
    59. Wang, Wei & Xiao, Weiwei & Bai, Caiquan, 2022. "Can renewable energy technology innovation alleviate energy poverty? Perspective from the marketization level," Technology in Society, Elsevier, vol. 68(C).
    60. Zafar, Muhammad Wasif & Zaidi, Syed Anees Haider & Khan, Naveed R. & Mirza, Faisal Mehmood & Hou, Fujun & Kirmani, Syed Ali Ashiq, 2019. "The impact of natural resources, human capital, and foreign direct investment on the ecological footprint: The case of the United States," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    61. Bouscayrol, A. & Delarue, Ph. & Guillaud, X., 2005. "Power strategies for maximum control structure of a wind energy conversion system with a synchronous machine," Renewable Energy, Elsevier, vol. 30(15), pages 2273-2288.
    62. Yi, Hongtao, 2013. "Clean energy policies and green jobs: An evaluation of green jobs in U.S. metropolitan areas," Energy Policy, Elsevier, vol. 56(C), pages 644-652.
    63. Wen, Huwei & Zhong, Qiming & Lee, Chien-Chiang, 2022. "Digitalization, competition strategy and corporate innovation: Evidence from Chinese manufacturing listed companies," International Review of Financial Analysis, Elsevier, vol. 82(C).
    64. Ogundari, Kolawole & Awokuse, Titus, 2018. "Human capital contribution to economic growth in Sub-Saharan Africa: Does health status matter more than education?," Economic Analysis and Policy, Elsevier, vol. 58(C), pages 131-140.
    65. Daniel Susskind, 2017. "A Model of Technological Unemployment," Economics Series Working Papers 819, University of Oxford, Department of Economics.
    66. Liu, Liang & Yang, Kun & Fujii, Hidemichi & Liu, Jun, 2021. "Artificial intelligence and energy intensity in China’s industrial sector: Effect and transmission channel," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 276-293.
    67. (Maggie) Fu, Xiaoqing & Bao, Qun & Xie, Hongjun & Fu, Xiaolan, 2021. "Diffusion of industrial robotics and inclusive growth: Labour market evidence from cross country data," Journal of Business Research, Elsevier, vol. 122(C), pages 670-684.
    68. Guy Michaels & Ashwini Natraj & John Van Reenen, 2014. "Has ICT Polarized Skill Demand? Evidence from Eleven Countries over Twenty-Five Years," The Review of Economics and Statistics, MIT Press, vol. 96(1), pages 60-77, March.
    69. Violeta Sima & Ileana Georgiana Gheorghe & Jonel Subić & Dumitru Nancu, 2020. "Influences of the Industry 4.0 Revolution on the Human Capital Development and Consumer Behavior: A Systematic Review," Sustainability, MDPI, vol. 12(10), pages 1-28, May.
    70. DeCanio, Stephen J., 2016. "Robots and humans – complements or substitutes?," Journal of Macroeconomics, Elsevier, vol. 49(C), pages 280-291.
    71. Dauth, Wolfgang & Findeisen, Sebastian & Südekum, Jens & Wößner, Nicole, 2017. "German robots - the impact of industrial robots on workers," IAB-Discussion Paper 201730, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    72. Hassan Qudrat-Ullah, 2005. "MDESRAP: a model for understanding the dynamics of electricity supply, resources and pollution," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 23(1), pages 1-14.
    73. Pata, Ugur Korkut & Isik, Cem, 2021. "Determinants of the load capacity factor in China: A novel dynamic ARDL approach for ecological footprint accounting," Resources Policy, Elsevier, vol. 74(C).
    74. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    75. Recep Ulucak & Danish & Salah Ud‐Din Khan, 2020. "Does information and communication technology affect CO2 mitigation under the pathway of sustainable development during the mode of globalization?," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 857-867, July.
    76. Huang, Po-Chun & Yang, Tzu-Ting, 2021. "The welfare effects of extending unemployment benefits: Evidence from re-employment and unemployment transfers," Journal of Public Economics, Elsevier, vol. 202(C).
    77. Danish & Recep Ulucak & Salah‐Ud‐Din Khan, 2020. "Relationship between energy intensity and CO2 emissions: Does economic policy matter?," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1457-1464, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke An & Yike Shan & Sheng Shi, 2022. "Impact of Industrial Intelligence on Total Factor Productivity," Sustainability, MDPI, vol. 14(21), pages 1-21, November.
    2. Gregory, Terry & Salomons, Anna & Zierahn, Ulrich, 2016. "Racing With or Against the Machine? Evidence from Europe," VfS Annual Conference 2016 (Augsburg): Demographic Change 145843, Verein für Socialpolitik / German Economic Association.
    3. Naude, Wim, 2019. "The race against the robots and the fallacy of the giant cheesecake: Immediate and imagined impacts of artificial intelligence," MERIT Working Papers 2019-005, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    4. Jasmine Mondolo, 2022. "The composite link between technological change and employment: A survey of the literature," Journal of Economic Surveys, Wiley Blackwell, vol. 36(4), pages 1027-1068, September.
    5. Sergio De Nardis & Francesca Parente, 2022. "Technology and task changes in the major EU countries," Contemporary Economic Policy, Western Economic Association International, vol. 40(2), pages 391-413, April.
    6. Cirillo, Valeria & Evangelista, Rinaldo & Guarascio, Dario & Sostero, Matteo, 2021. "Digitalization, routineness and employment: An exploration on Italian task-based data," Research Policy, Elsevier, vol. 50(7).
    7. Yin, Zi Hui & Zeng, Wei Ping, 2023. "The effects of industrial intelligence on China's energy intensity: The role of technology absorptive capacity," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    8. Camiña, Ester & Díaz-Chao, Ángel & Torrent-Sellens, Joan, 2020. "Automation technologies: Long-term effects for Spanish industrial firms," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    9. Wang, Jianlong & Wang, Weilong & Liu, Yong & Wu, Haitao, 2023. "Can industrial robots reduce carbon emissions? Based on the perspective of energy rebound effect and labor factor flow in China," Technology in Society, Elsevier, vol. 72(C).
    10. Klump, Rainer & Jurkat, Anne & Schneider, Florian, 2021. "Tracking the rise of robots: A survey of the IFR database and its applications," MPRA Paper 107909, University Library of Munich, Germany.
    11. Fierro, Luca Eduardo & Caiani, Alessandro & Russo, Alberto, 2022. "Automation, Job Polarisation, and Structural Change," Journal of Economic Behavior & Organization, Elsevier, vol. 200(C), pages 499-535.
    12. Jurkat, Anne & Klump, Rainer & Schneider, Florian, 2023. "Robots and Wages: A Meta-Analysis," EconStor Preprints 274156, ZBW - Leibniz Information Centre for Economics.
    13. Du, Longzheng & Lin, Weifen, 2022. "Does the application of industrial robots overcome the Solow paradox? Evidence from China," Technology in Society, Elsevier, vol. 68(C).
    14. Liu, Liang & Yang, Kun & Fujii, Hidemichi & Liu, Jun, 2021. "Artificial intelligence and energy intensity in China’s industrial sector: Effect and transmission channel," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 276-293.
    15. Genz, Sabrina & Schnabel, Claus, 2021. "Digging into the digital divide: Workers' exposure to digitalization and its consequences for individual employment," Discussion Papers 118, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Labour and Regional Economics.
    16. Jelena Reljic & Rinaldo Evangelista & Mario Pianta, 2019. "Digital technologies, employment and skills," LEM Papers Series 2019/36, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    17. Caselli, Mauro & Fracasso, Andrea & Scicchitano, Sergio & Traverso, Silvio & Tundis, Enrico, 2021. "Stop worrying and love the robot: An activity-based approach to assess the impact of robotization on employment dynamics," GLO Discussion Paper Series 802, Global Labor Organization (GLO).
    18. Stefan Jestl, 2022. "Industrial Robots, and Information and Communication Technology: The Employment Effects in EU Labour Markets," wiiw Working Papers 215, The Vienna Institute for International Economic Studies, wiiw.
    19. Montobbio, Fabio & Staccioli, Jacopo & Virgillito, Maria Enrica & Vivarelli, Marco, 2022. "Robots and the origin of their labour-saving impact," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    20. repec:hal:spmain:info:hdl:2441/7n49nkmngd8448a5ts5gt5ade0 is not listed on IDEAS
    21. Arntz, Melanie & Gregory, Terry & Zierahn, Ulrich, 2019. "Digitalization and the Future of Work: Macroeconomic Consequences," IZA Discussion Papers 12428, Institute of Labor Economics (IZA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:198:y:2022:i:c:s0921800922001458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.