IDEAS home Printed from https://ideas.repec.org/a/eee/ecanpo/v85y2025icp48-60.html
   My bibliography  Save this article

Artificial Intelligence-driven regional energy transition:Evidence from China

Author

Listed:
  • Zhao, Zuoxiang
  • Zhao, Qiuyun
  • Li, Siqi
  • Yan, Jiajia

Abstract

As Artificial Intelligence (AI) technology advances rapidly, its role in promoting regional energy transformation is becoming increasingly apparent. This paper utilizes regional-level panel data from China, covering the period from 2011 to 2021, to systematically assess the impact of AI development on energy transformation. Using econometric models, including fixed-effects and instrumental variable regressions, the study reveals that an increase in AI enterprises within a region significantly reduces energy consumption per unit of GDP, thereby accelerating regional energy transition. The analysis identifies two primary channels through which AI exerts this effect: by facilitating the upgrading of the regional industrial structure and by promoting the growth of the digital economy. The findings also show that the impact of AI is more pronounced in highly urbanized regions, particularly in the Yangtze River Economic Belt. Additionally, the results highlight that AI-driven reductions in energy consumption are largely achieved through improved efficiency in coal and electricity usage, addressing key structural issues in China's energy landscape.

Suggested Citation

  • Zhao, Zuoxiang & Zhao, Qiuyun & Li, Siqi & Yan, Jiajia, 2025. "Artificial Intelligence-driven regional energy transition:Evidence from China," Economic Analysis and Policy, Elsevier, vol. 85(C), pages 48-60.
  • Handle: RePEc:eee:ecanpo:v:85:y:2025:i:c:p:48-60
    DOI: 10.1016/j.eap.2024.10.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0313592624002583
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eap.2024.10.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daron Acemoglu & Pascual Restrepo, 2018. "The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment," American Economic Review, American Economic Association, vol. 108(6), pages 1488-1542, June.
    2. John G. Fernald & Charles I. Jones, 2014. "The Future of US Economic Growth," American Economic Review, American Economic Association, vol. 104(5), pages 44-49, May.
    3. Chenery, Hollis B, 1975. "The Structuralist Approach to Development Policy," American Economic Review, American Economic Association, vol. 65(2), pages 310-316, May.
    4. Su, Bin & Ang, B.W., 2015. "Multiplicative decomposition of aggregate carbon intensity change using input–output analysis," Applied Energy, Elsevier, vol. 154(C), pages 13-20.
    5. Yang Lu, 2019. "Artificial intelligence: a survey on evolution, models, applications and future trends," Journal of Management Analytics, Taylor & Francis Journals, vol. 6(1), pages 1-29, January.
    6. Pournader, Mehrdokht & Ghaderi, Hadi & Hassanzadegan, Amir & Fahimnia, Behnam, 2021. "Artificial intelligence applications in supply chain management," International Journal of Production Economics, Elsevier, vol. 241(C).
    7. Shahbaz, Muhammad & Wang, Jianda & Dong, Kangyin & Zhao, Jun, 2022. "The impact of digital economy on energy transition across the globe: The mediating role of government governance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    8. Yan, Huijie, 2015. "Provincial energy intensity in China: The role of urbanization," Energy Policy, Elsevier, vol. 86(C), pages 635-650.
    9. Shin, Won & Han, Jeongyun & Rhee, Wonjong, 2021. "AI-assistance for predictive maintenance of renewable energy systems," Energy, Elsevier, vol. 221(C).
    10. Erik Brynjolfsson & Daniel Rock & Chad Syverson, 2018. "Artificial Intelligence and the Modern Productivity Paradox: A Clash of Expectations and Statistics," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 23-57, National Bureau of Economic Research, Inc.
    11. Liu, Jun & Liu, Liang & Qian, Yu & Song, Shunfeng, 2022. "The effect of artificial intelligence on carbon intensity: Evidence from China's industrial sector," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    12. David Hémous & Morten Olsen, 2022. "The Rise of the Machines: Automation, Horizontal Innovation, and Income Inequality," American Economic Journal: Macroeconomics, American Economic Association, vol. 14(1), pages 179-223, January.
    13. Piotr F. Borowski, 2021. "Digitization, Digital Twins, Blockchain, and Industry 4.0 as Elements of Management Process in Enterprises in the Energy Sector," Energies, MDPI, vol. 14(7), pages 1-20, March.
    14. Brent Neiman, 2014. "The Global Decline of the Labor Share," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 129(1), pages 61-103.
    15. Richard Rogerson, 2008. "Structural Transformation and the Deterioration of European Labor Market Outcomes," Journal of Political Economy, University of Chicago Press, vol. 116(2), pages 235-259, April.
    16. Philippe Aghion & Benjamin F. Jones & Charles I. Jones, 2018. "Artificial Intelligence and Economic Growth," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 237-282, National Bureau of Economic Research, Inc.
    17. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    18. Wang, Jianda & Wang, Bo & Dong, Kangyin & Dong, Xiucheng, 2022. "How does the digital economy improve high-quality energy development? The case of China," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    19. Fierro, Luca Eduardo & Caiani, Alessandro & Russo, Alberto, 2022. "Automation, Job Polarisation, and Structural Change," Journal of Economic Behavior & Organization, Elsevier, vol. 200(C), pages 499-535.
    20. Daron Acemoglu & Pascual Restrepo, 2020. "Robots and Jobs: Evidence from US Labor Markets," Journal of Political Economy, University of Chicago Press, vol. 128(6), pages 2188-2244.
    21. Boza, Pal & Evgeniou, Theodoros, 2021. "Artificial intelligence to support the integration of variable renewable energy sources to the power system," Applied Energy, Elsevier, vol. 290(C).
    22. Yang, Chunmeng & Bu, Siqi & Fan, Yi & Wan, Wayne Xinwei & Wang, Ruoheng & Foley, Aoife, 2023. "Data-driven prediction and evaluation on future impact of energy transition policies in smart regions," Applied Energy, Elsevier, vol. 332(C).
    23. Wang, Ying & Wang, Yong & Shahbaz, Muhammad, 2023. "How does digital economy affect energy poverty? Analysis from the global perspective," Energy, Elsevier, vol. 282(C).
    24. Zhang, Fan & Deng, Xiangzheng & Phillips, Fred & Fang, Chuanglin & Wang, Chao, 2020. "Impacts of industrial structure and technical progress on carbon emission intensity: Evidence from 281 cities in China," Technological Forecasting and Social Change, Elsevier, vol. 154(C).
    25. Liu, Jun & Chang, Huihong & Forrest, Jeffrey Yi-Lin & Yang, Baohua, 2020. "Influence of artificial intelligence on technological innovation: Evidence from the panel data of china's manufacturing sectors," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    26. Kwok Tai Chui & Miltiadis D. Lytras & Anna Visvizi, 2018. "Energy Sustainability in Smart Cities: Artificial Intelligence, Smart Monitoring, and Optimization of Energy Consumption," Energies, MDPI, vol. 11(11), pages 1-20, October.
    27. Pan, Xiongfeng & Ai, Bowei & Li, Changyu & Pan, Xianyou & Yan, Yaobo, 2019. "Dynamic relationship among environmental regulation, technological innovation and energy efficiency based on large scale provincial panel data in China," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 428-435.
    28. Chen, Kaiming & Chen, Xiaoqian & Wang, Zhan-ao & Zvarych, Roman, 2024. "Does artificial intelligence promote common prosperity within enterprises? —Evidence from Chinese-listed companies in the service industry," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    29. Gupta, Brij B. & Gaurav, Akshat & Panigrahi, Prabin Kumar & Arya, Varsha, 2023. "Analysis of artificial intelligence-based technologies and approaches on sustainable entrepreneurship," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    30. Jenne, C. A. & Cattell, R. K., 1983. "Structural change and energy efficiency in industry," Energy Economics, Elsevier, vol. 5(2), pages 114-123, April.
    31. Timothy J. Bartik, 1991. "Who Benefits from State and Local Economic Development Policies?," Books from Upjohn Press, W.E. Upjohn Institute for Employment Research, number wbsle.
    32. Lin, Boqiang & Huang, Chenchen, 2023. "How will promoting the digital economy affect electricity intensity?," Energy Policy, Elsevier, vol. 173(C).
    33. Huijie Yan, 2015. "Provincial energy intensity in China: The role of urbanization," Post-Print hal-01457329, HAL.
    34. Iain M. Cockburn & Rebecca Henderson & Scott Stern, 2018. "The Impact of Artificial Intelligence on Innovation," NBER Working Papers 24449, National Bureau of Economic Research, Inc.
    35. Zhang, ZhongXiang, 2003. "Why did the energy intensity fall in China's industrial sector in the 1990s? The relative importance of structural change and intensity change," Energy Economics, Elsevier, vol. 25(6), pages 625-638, November.
    36. Daron Acemoglu & Pascual Restrepo, 2017. "Secular Stagnation? The Effect of Aging on Economic Growth in the Age of Automation," American Economic Review, American Economic Association, vol. 107(5), pages 174-179, May.
    37. Lee, Chien-Chiang & Qin, Shuai & Li, Yaya, 2022. "Does industrial robot application promote green technology innovation in the manufacturing industry?," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    38. Tan, Ruipeng & Lin, Boqiang, 2018. "What factors lead to the decline of energy intensity in China's energy intensive industries?," Energy Economics, Elsevier, vol. 71(C), pages 213-221.
    39. Michael Elsby & Bart Hobijn & Ayseful Sahin, 2013. "The Decline of the U.S. Labor Share," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 44(2 (Fall)), pages 1-63.
    40. Sheng, Yu & Shi, Xunpeng & Zhang, Dandan, 2014. "Economic growth, regional disparities and energy demand in China," Energy Policy, Elsevier, vol. 71(C), pages 31-39.
    41. Wang, Lianghu & Shao, Jun, 2023. "Digital economy, entrepreneurship and energy efficiency," Energy, Elsevier, vol. 269(C).
    42. Guang, Fengtao & He, Yongxiu & Wen, Le & Sharp, Basil, 2019. "Energy intensity and its differences across China’s regions: Combining econometric and decomposition analysis," Energy, Elsevier, vol. 180(C), pages 989-1000.
    43. Jon Truby, 2020. "Governing Artificial Intelligence to benefit the UN Sustainable Development Goals," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 946-959, July.
    44. Li, Ke & Lin, Boqiang, 2014. "The nonlinear impacts of industrial structure on China's energy intensity," Energy, Elsevier, vol. 69(C), pages 258-265.
    45. Wang, Zeyu & Srinivasan, Ravi S., 2017. "A review of artificial intelligence based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 796-808.
    46. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    47. Ricardo Vinuesa & Hossein Azizpour & Iolanda Leite & Madeline Balaam & Virginia Dignum & Sami Domisch & Anna Felländer & Simone Daniela Langhans & Max Tegmark & Francesco Fuso Nerini, 2020. "The role of artificial intelligence in achieving the Sustainable Development Goals," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    48. Iain M. Cockburn & Rebecca Henderson & Scott Stern, 2018. "The Impact of Artificial Intelligence on Innovation: An Exploratory Analysis," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 115-146, National Bureau of Economic Research, Inc.
    49. George Baryannis & Sahar Validi & Samir Dani & Grigoris Antoniou, 2019. "Supply chain risk management and artificial intelligence: state of the art and future research directions," International Journal of Production Research, Taylor & Francis Journals, vol. 57(7), pages 2179-2202, April.
    50. Ma, Shuaiyin & Huang, Yuming & Liu, Yang & Kong, Xianguang & Yin, Lei & Chen, Gaige, 2023. "Edge-cloud cooperation-driven smart and sustainable production for energy-intensive manufacturing industries," Applied Energy, Elsevier, vol. 337(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yingji & Shen, Fangbing & Guo, Ju & Hu, Guoheng & Song, Yuegang, 2025. "Can artificial intelligence technology improve companies' capacity for green innovation? Evidence from listed companies in China," Energy Economics, Elsevier, vol. 143(C).
    2. Liu, Liang & Yang, Kun & Fujii, Hidemichi & Liu, Jun, 2021. "Artificial intelligence and energy intensity in China’s industrial sector: Effect and transmission channel," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 276-293.
    3. Abeliansky, Ana Lucia & Prettner, Klaus, 2023. "Automation and population growth: Theory and cross-country evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 208(C), pages 345-358.
    4. Basso, Henrique S. & Jimeno, Juan F., 2021. "From secular stagnation to robocalypse? Implications of demographic and technological changes," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 833-847.
    5. Rachel Ngai & Orhun Sevinc, 2025. "A Multisector Perspective on Wage Stagnation," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 56, April.
    6. Zhong, Wenli & Liu, Yang & Dong, Kangyin & Ni, Guohua, 2024. "Assessing the synergistic effects of artificial intelligence on pollutant and carbon emission mitigation in China," Energy Economics, Elsevier, vol. 138(C).
    7. Abeliansky, Ana Lucia & Prettner, Klaus, 2017. "Automation and demographic change," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168215, Verein für Socialpolitik / German Economic Association.
    8. Shimizu, Ryosuke & Momoda, Shohei, 2023. "Does automation technology increase wage?," Journal of Macroeconomics, Elsevier, vol. 77(C).
    9. Lee, Chien-Chiang & Yan, Jingyang, 2024. "Will artificial intelligence make energy cleaner? Evidence of nonlinearity," Applied Energy, Elsevier, vol. 363(C).
    10. Ryosuke Shimizu & Shohei Momoda, 2020. "Does Automation Technology increase Wage?," KIER Working Papers 1039, Kyoto University, Institute of Economic Research.
    11. Wang, Hua & Liao, Lingtao & Wu, Ji (George), 2023. "Robot adoption and firm's capacity utilization: Evidence from China," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
    12. Yang, Haochang & Li, Lianshui & Liu, Yaobin, 2022. "The effect of manufacturing intelligence on green innovation performance in China," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    13. Lin, Boqiang & Xu, Chongchong, 2024. "The effects of industrial robots on firm energy intensity: From the perspective of technological innovation and electrification," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    14. Venturini, Francesco, 2022. "Intelligent technologies and productivity spillovers: Evidence from the Fourth Industrial Revolution," Journal of Economic Behavior & Organization, Elsevier, vol. 194(C), pages 220-243.
    15. Zhao, Qian & Wang, Lu & Stan, Sebastian-Emanuel & Mirza, Nawazish, 2024. "Can artificial intelligence help accelerate the transition to renewable energy?," Energy Economics, Elsevier, vol. 134(C).
    16. Ajay Agrawal & Joshua Gans & Avi Goldfarb, 2019. "Economic Policy for Artificial Intelligence," Innovation Policy and the Economy, University of Chicago Press, vol. 19(1), pages 139-159.
    17. Bernardo S Buarque & Ronald B Davies & Ryan M Hynes & Dieter F Kogler, 2020. "OK Computer: the creation and integration of AI in Europe," Cambridge Journal of Regions, Economy and Society, Cambridge Political Economy Society, vol. 13(1), pages 175-192.
    18. Philippe Aghion & Ufuk Akcigit & Antonin Bergeaud & Richard Blundell & David Hemous, 2019. "Innovation and Top Income Inequality," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(1), pages 1-45.
    19. Naude, Wim, 2019. "The race against the robots and the fallacy of the giant cheesecake: Immediate and imagined impacts of artificial intelligence," MERIT Working Papers 2019-005, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    20. Clemens Struck & Adnan Velic, 2017. "Automation, New Technology, and Non-Homothetic Preferences," Trinity Economics Papers tep1217, Trinity College Dublin, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecanpo:v:85:y:2025:i:c:p:48-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/economic-analysis-and-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.