IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p2869-d177758.html
   My bibliography  Save this article

Energy Sustainability in Smart Cities: Artificial Intelligence, Smart Monitoring, and Optimization of Energy Consumption

Author

Listed:
  • Kwok Tai Chui

    (Department of Electronic Engineering, City University of Hong Kong, Hong Kong SAR, China)

  • Miltiadis D. Lytras

    (School of Business & Economics, Deree College—The American College of Greece, Gravias 6, 153 42 Aghia Paraskevi, Greece
    Effat College of Engineering, Effat University, P.O. Box 34689, Jeddah 21478, Saudi Arabia)

  • Anna Visvizi

    (School of Business & Economics, Deree College—The American College of Greece, Gravias 6, 153 42 Aghia Paraskevi, Greece
    Effat College of Business, Effat University, P.O. Box 34689, Jeddah 21478, Saudi Arabia)

Abstract

Energy sustainability is one of the key questions that drive the debate on cities’ and urban areas development. In parallel, artificial intelligence and cognitive computing have emerged as catalysts in the process aimed at designing and optimizing smart services’ supply and utilization in urban space. The latter are paramount in the domain of energy provision and consumption. This paper offers an insight into pilot systems and prototypes that showcase in which ways artificial intelligence can offer critical support in the process of attaining energy sustainability in smart cities. To this end, this paper examines smart metering and non-intrusive load monitoring (NILM) to make a case for the latter’s value added in context of profiling electric appliances’ electricity consumption. By employing the findings in context of smart cities research, the paper then adds to the debate on energy sustainability in urban space. Existing research tends to be limited by data granularity (not in high frequency) and consideration of about six kinds of appliances. In this paper, a hybrid genetic algorithm support vector machine multiple kernel learning approach (GA-SVM-MKL) is proposed for NILM, with consideration of 20 kinds of appliance. Genetic algorithm helps to solve the multi-objective optimization problem and design the optimal kernel function based on various kernel properties. The performance indicators are sensitivity ( S e ), specificity ( S p ) and overall accuracy (OA) of the classifier. First, the performance evaluation of proposed GA-SVM-MKL achieves S e of 92.1%, S p of 91.5% and OA of 91.8%. Second, the percentage improvement of performance indicators using proposed method is more than 21% compared with traditional kernel. Third, results reveal that by keeping different modes of electric appliance as identical class label, the performance indicators can increase to about 15%. Forth, tunable modes of GA-SVM-MKL classifier are proposed to further enhance the performance indicators up to 7%. Overall, this paper is a bold and novel contribution to the debate on energy utilization and sustainability in urban spaces as it integrates insights from artificial intelligence, IoT, and big data analytics and queries them in a context defined by energy sustainability in smart cities.

Suggested Citation

  • Kwok Tai Chui & Miltiadis D. Lytras & Anna Visvizi, 2018. "Energy Sustainability in Smart Cities: Artificial Intelligence, Smart Monitoring, and Optimization of Energy Consumption," Energies, MDPI, vol. 11(11), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2869-:d:177758
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/2869/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/2869/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shailendra Singh & Abdulsalam Yassine, 2018. "Big Data Mining of Energy Time Series for Behavioral Analytics and Energy Consumption Forecasting," Energies, MDPI, vol. 11(2), pages 1-26, February.
    2. Carrie Armel, K. & Gupta, Abhay & Shrimali, Gireesh & Albert, Adrian, 2013. "Is disaggregation the holy grail of energy efficiency? The case of electricity," Energy Policy, Elsevier, vol. 52(C), pages 213-234.
    3. Stankovic, L. & Stankovic, V. & Liao, J. & Wilson, C., 2016. "Measuring the energy intensity of domestic activities from smart meter data," Applied Energy, Elsevier, vol. 183(C), pages 1565-1580.
    4. Shuai-Lei Yao & Jing-Jia Luo & Gang Huang & Pengfei Wang, 2017. "Distinct global warming rates tied to multiple ocean surface temperature changes," Nature Climate Change, Nature, vol. 7(7), pages 486-491, July.
    5. Miltiadis D. Lytras & Anna Visvizi, 2018. "Who Uses Smart City Services and What to Make of It: Toward Interdisciplinary Smart Cities Research," Sustainability, MDPI, vol. 10(6), pages 1-16, June.
    6. Marzband, Mousa & Azarinejadian, Fatemeh & Savaghebi, Mehdi & Pouresmaeil, Edris & Guerrero, Josep M. & Lightbody, Gordon, 2018. "Smart transactive energy framework in grid-connected multiple home microgrids under independent and coalition operations," Renewable Energy, Elsevier, vol. 126(C), pages 95-106.
    7. Sharma, Konark & Mohan Saini, Lalit, 2015. "Performance analysis of smart metering for smart grid: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 720-735.
    8. Tsai, Men-Shen & Lin, Yu-Hsiu, 2012. "Modern development of an Adaptive Non-Intrusive Appliance Load Monitoring system in electricity energy conservation," Applied Energy, Elsevier, vol. 96(C), pages 55-73.
    9. Miltiadis D. Lytras & Vijay Raghavan & Ernesto Damiani, 2017. "Big Data and Data Analytics Research: From Metaphors to Value Space for Collective Wisdom in Human Decision Making and Smart Machines," International Journal on Semantic Web and Information Systems (IJSWIS), IGI Global, vol. 13(1), pages 1-10, January.
    10. Krzysztof Gajowniczek & Tomasz Ząbkowski, 2017. "Two-Stage Electricity Demand Modeling Using Machine Learning Algorithms," Energies, MDPI, vol. 10(10), pages 1-25, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rashid, Haroon & Singh, Pushpendra & Stankovic, Vladimir & Stankovic, Lina, 2019. "Can non-intrusive load monitoring be used for identifying an appliance’s anomalous behaviour?," Applied Energy, Elsevier, vol. 238(C), pages 796-805.
    2. Wu, Junqi & Niu, Zhibin & Li, Xiang & Huang, Lizhen & Nielsen, Per Sieverts & Liu, Xiufeng, 2023. "Understanding multi-scale spatiotemporal energy consumption data: A visual analysis approach," Energy, Elsevier, vol. 263(PD).
    3. Yanfang Zhang & Mushang Lee, 2019. "A Hybrid Model for Addressing the Relationship between Financial Performance and Sustainable Development," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
    4. Liu, Bo & Luan, Wenpeng & Yu, Yixin, 2017. "Dynamic time warping based non-intrusive load transient identification," Applied Energy, Elsevier, vol. 195(C), pages 634-645.
    5. Miltiadis D. Lytras & Anna Visvizi & Akila Sarirete, 2019. "Clustering Smart City Services: Perceptions, Expectations, Responses," Sustainability, MDPI, vol. 11(6), pages 1-19, March.
    6. Sunmin Lee & Yunjung Hyun & Moung-Jin Lee, 2019. "Groundwater Potential Mapping Using Data Mining Models of Big Data Analysis in Goyang-si, South Korea," Sustainability, MDPI, vol. 11(6), pages 1-21, March.
    7. Derek W. Bunn & Angelica Gianfreda & Stefan Kermer, 2018. "A Trading-Based Evaluation of Density Forecasts in a Real-Time Electricity Market," Energies, MDPI, vol. 11(10), pages 1-13, October.
    8. Patricia Ordóñez de Pablos & Miltiadis Lytras, 2018. "Knowledge Management, Innovation and Big Data: Implications for Sustainability, Policy Making and Competitiveness," Sustainability, MDPI, vol. 10(6), pages 1-7, June.
    9. Lesley Thomson & David Jenkins, 2023. "The Use of Real Energy Consumption Data in Characterising Residential Energy Demand with an Inventory of UK Datasets," Energies, MDPI, vol. 16(16), pages 1-29, August.
    10. Yung Yau & Wai Kin Lau, 2018. "Big Data Approach as an Institutional Innovation to Tackle Hong Kong’s Illegal Subdivided Unit Problem," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
    11. Ru-Guan Wang & Wen-Jen Ho & Kuei-Chun Chiang & Yung-Chieh Hung & Jen-Kuo Tai & Jia-Cheng Tan & Mei-Ling Chuang & Chi-Yun Ke & Yi-Fan Chien & An-Ping Jeng & Chien-Cheng Chou, 2023. "Analyzing Long-Term and High Instantaneous Power Consumption of Buildings from Smart Meter Big Data with Deep Learning and Knowledge Graph Techniques," Energies, MDPI, vol. 16(19), pages 1-24, September.
    12. Dinesh, Chinthaka & Welikala, Shirantha & Liyanage, Yasitha & Ekanayake, Mervyn Parakrama B. & Godaliyadda, Roshan Indika & Ekanayake, Janaka, 2017. "Non-intrusive load monitoring under residential solar power influx," Applied Energy, Elsevier, vol. 205(C), pages 1068-1080.
    13. Ahmadi-Karvigh, Simin & Ghahramani, Ali & Becerik-Gerber, Burcin & Soibelman, Lucio, 2018. "Real-time activity recognition for energy efficiency in buildings," Applied Energy, Elsevier, vol. 211(C), pages 146-160.
    14. Alessandro Crivellari & Euro Beinat, 2020. "LSTM-Based Deep Learning Model for Predicting Individual Mobility Traces of Short-Term Foreign Tourists," Sustainability, MDPI, vol. 12(1), pages 1-18, January.
    15. Vasile Gherheș & Ciprian Obrad, 2018. "Technical and Humanities Students’ Perspectives on the Development and Sustainability of Artificial Intelligence (AI)," Sustainability, MDPI, vol. 10(9), pages 1-16, August.
    16. Yi-Zeng Hsieh & Shih-Syun Lin & Yu-Cin Luo & Yu-Lin Jeng & Shih-Wei Tan & Chao-Rong Chen & Pei-Ying Chiang, 2020. "ARCS-Assisted Teaching Robots Based on Anticipatory Computing and Emotional Big Data for Improving Sustainable Learning Efficiency and Motivation," Sustainability, MDPI, vol. 12(14), pages 1-17, July.
    17. Xinghua Wang & Fucheng Zhong & Yilin Xu & Xixian Liu & Zezhong Li & Jianan Liu & Zhuoli Zhao, 2023. "Extraction and Joint Method of PV–Load Typical Scenes Considering Temporal and Spatial Distribution Characteristics," Energies, MDPI, vol. 16(18), pages 1-19, September.
    18. Chatzigeorgiou, I.M. & Andreou, G.T., 2021. "A systematic review on feedback research for residential energy behavior change through mobile and web interfaces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. Violeta Mihaela Dincă & Mihail Busu & Zoltan Nagy-Bege, 2022. "Determinants with Impact on Romanian Consumers’ Energy-Saving Habits," Energies, MDPI, vol. 15(11), pages 1-18, June.
    20. Maria Vincenza Ciasullo & Orlando Troisi & Mara Grimaldi & Daniele Leone, 2020. "Multi-level governance for sustainable innovation in smart communities: an ecosystems approach," International Entrepreneurship and Management Journal, Springer, vol. 16(4), pages 1167-1195, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2869-:d:177758. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.