IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i10p1547-d114315.html
   My bibliography  Save this article

Two-Stage Electricity Demand Modeling Using Machine Learning Algorithms

Author

Listed:
  • Krzysztof Gajowniczek

    (Department of Informatics, Faculty of Applied Informatics and Mathematics, Warsaw University of Life Sciences, Nowoursynowska 159, 02-787 Warsaw, Poland)

  • Tomasz Ząbkowski

    (Department of Informatics, Faculty of Applied Informatics and Mathematics, Warsaw University of Life Sciences, Nowoursynowska 159, 02-787 Warsaw, Poland)

Abstract

Forecasting of electricity demand has become one of the most important areas of research in the electric power industry, as it is a critical component of cost-efficient power system management and planning. In this context, accurate and robust load forecasting is supposed to play a key role in reducing generation costs, and deals with the reliability of the power system. However, due to demand peaks in the power system, forecasts are inaccurate and prone to high numbers of errors. In this paper, our contributions comprise a proposed data-mining scheme for demand modeling through peak detection, as well as the use of this information to feed the forecasting system. For this purpose, we have taken a different approach from that of time series forecasting, representing it as a two-stage pattern recognition problem. We have developed a peak classification model followed by a forecasting model to estimate an aggregated demand volume. We have utilized a set of machine learning algorithms to benefit from both accurate detection of the peaks and precise forecasts, as applied to the Polish power system. The key finding is that the algorithms can detect 96.3% of electricity peaks (load value equal to or above the 99th percentile of the load distribution) and deliver accurate forecasts, with mean absolute percentage error (MAPE) of 3.10% and resistant mean absolute percentage error (r-MAPE) of 2.70% for the 24 h forecasting horizon.

Suggested Citation

  • Krzysztof Gajowniczek & Tomasz Ząbkowski, 2017. "Two-Stage Electricity Demand Modeling Using Machine Learning Algorithms," Energies, MDPI, vol. 10(10), pages 1-25, October.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1547-:d:114315
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/10/1547/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/10/1547/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fakhri J. Hasanov & Lester C. Hunt & Ceyhun I. Mikayilov, 2016. "Modeling and Forecasting Electricity Demand in Azerbaijan Using Cointegration Techniques," Energies, MDPI, vol. 9(12), pages 1-31, December.
    2. Beenstock, Michael & Goldin, Ephraim & Nabot, Dan, 1999. "The demand for electricity in Israel," Energy Economics, Elsevier, vol. 21(2), pages 168-183, April.
    3. Ang, B.W., 1995. "Decomposition methodology in industrial energy demand analysis," Energy, Elsevier, vol. 20(11), pages 1081-1095.
    4. Pao, H.T., 2009. "Forecasting energy consumption in Taiwan using hybrid nonlinear models," Energy, Elsevier, vol. 34(10), pages 1438-1446.
    5. Javed, Fahad & Arshad, Naveed & Wallin, Fredrik & Vassileva, Iana & Dahlquist, Erik, 2012. "Forecasting for demand response in smart grids: An analysis on use of anthropologic and structural data and short term multiple loads forecasting," Applied Energy, Elsevier, vol. 96(C), pages 150-160.
    6. Shuyu Li & Rongrong Li, 2017. "Comparison of Forecasting Energy Consumption in Shandong, China Using the ARIMA Model, GM Model, and ARIMA-GM Model," Sustainability, MDPI, vol. 9(7), pages 1-19, July.
    7. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    8. De Martino Jannuzzi, Gilberto & Schipper, Lee, 1991. "The structure of electricity demand in the Brazilian household sector," Energy Policy, Elsevier, vol. 19(9), pages 879-891, November.
    9. Seunghyoung Ryu & Jaekoo Noh & Hongseok Kim, 2016. "Deep Neural Network Based Demand Side Short Term Load Forecasting," Energies, MDPI, vol. 10(1), pages 1-20, December.
    10. Lee, Chien-Chiang & Chang, Chun-Ping, 2007. "The impact of energy consumption on economic growth: Evidence from linear and nonlinear models in Taiwan," Energy, Elsevier, vol. 32(12), pages 2282-2294.
    11. Samouilidis, J. -E. & Mitropoulos, C. S., 1984. "Energy and economic growth in industrializing countries : The case of Greece," Energy Economics, Elsevier, vol. 6(3), pages 191-201, July.
    12. Goia, Aldo & May, Caterina & Fusai, Gianluca, 2010. "Functional clustering and linear regression for peak load forecasting," International Journal of Forecasting, Elsevier, vol. 26(4), pages 700-711, October.
    13. Pokharel, Shaligram, 2007. "An econometric analysis of energy consumption in Nepal," Energy Policy, Elsevier, vol. 35(1), pages 350-361, January.
    14. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601.
    15. Wang, Jianzhou & Zhu, Suling & Zhang, Wenyu & Lu, Haiyan, 2010. "Combined modeling for electric load forecasting with adaptive particle swarm optimization," Energy, Elsevier, vol. 35(4), pages 1671-1678.
    16. Kim, Sung Hyun & Kim, Tae Heon & Kim, Youngduk & Na, In-Gang, 2001. "Korean energy demand in the new millenium: outlook and policy implications, 2000-2005," Energy Policy, Elsevier, vol. 29(11), pages 899-910, September.
    17. Ozturk, Harun Kemal & Ceylan, Halim & Canyurt, Olcay Ersel & Hepbasli, Arif, 2005. "Electricity estimation using genetic algorithm approach: a case study of Turkey," Energy, Elsevier, vol. 30(7), pages 1003-1012.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moroff, Nikolas Ulrich & Sardesai, Saskia, 2019. "Machine learning in demand planning: Cross-industry overview," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), Artificial Intelligence and Digital Transformation in Supply Chain Management: Innovative Approaches for Supply Chains. Proceedings of the Hamburg Int, volume 27, pages 355-383, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    2. Laib, Oussama & Khadir, Mohamed Tarek & Mihaylova, Lyudmila, 2019. "Toward efficient energy systems based on natural gas consumption prediction with LSTM Recurrent Neural Networks," Energy, Elsevier, vol. 177(C), pages 530-542.
    3. Derek W. Bunn & Angelica Gianfreda & Stefan Kermer, 2018. "A Trading-Based Evaluation of Density Forecasts in a Real-Time Electricity Market," Energies, MDPI, vol. 11(10), pages 1-13, October.
    4. Abdelmonaem Jornaz & V. A. Samaranayake, 2019. "A Multi-Step Approach to Modeling the 24-hour Daily Profiles of Electricity Load using Daily Splines," Energies, MDPI, vol. 12(21), pages 1-22, November.
    5. Norman Maswanganyi & Caston Sigauke & Edmore Ranganai, 2021. "Prediction of Extreme Conditional Quantiles of Electricity Demand: An Application Using South African Data," Energies, MDPI, vol. 14(20), pages 1-21, October.
    6. Kwok Tai Chui & Miltiadis D. Lytras & Anna Visvizi, 2018. "Energy Sustainability in Smart Cities: Artificial Intelligence, Smart Monitoring, and Optimization of Energy Consumption," Energies, MDPI, vol. 11(11), pages 1-20, October.
    7. Zigui Jiang & Rongheng Lin & Fangchun Yang, 2018. "A Hybrid Machine Learning Model for Electricity Consumer Categorization Using Smart Meter Data," Energies, MDPI, vol. 11(9), pages 1-19, August.
    8. Krzysztof Gajowniczek & Tomasz Ząbkowski, 2018. "Simulation Study on Clustering Approaches for Short-Term Electricity Forecasting," Complexity, Hindawi, vol. 2018, pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    2. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    3. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    4. Nowotarski, Jakub & Liu, Bidong & Weron, Rafał & Hong, Tao, 2016. "Improving short term load forecast accuracy via combining sister forecasts," Energy, Elsevier, vol. 98(C), pages 40-49.
    5. Fanidhar Dewangan & Almoataz Y. Abdelaziz & Monalisa Biswal, 2023. "Load Forecasting Models in Smart Grid Using Smart Meter Information: A Review," Energies, MDPI, vol. 16(3), pages 1-55, January.
    6. Sumer, Kutluk Kagan & Goktas, Ozlem & Hepsag, Aycan, 2009. "The application of seasonal latent variable in forecasting electricity demand as an alternative method," Energy Policy, Elsevier, vol. 37(4), pages 1317-1322, April.
    7. Zhu, Suling & Wang, Jianzhou & Zhao, Weigang & Wang, Jujie, 2011. "A seasonal hybrid procedure for electricity demand forecasting in China," Applied Energy, Elsevier, vol. 88(11), pages 3807-3815.
    8. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    9. Xiao, Liye & Shao, Wei & Liang, Tulu & Wang, Chen, 2016. "A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting," Applied Energy, Elsevier, vol. 167(C), pages 135-153.
    10. Afanasyev, Dmitriy O. & Fedorova, Elena A., 2019. "On the impact of outlier filtering on the electricity price forecasting accuracy," Applied Energy, Elsevier, vol. 236(C), pages 196-210.
    11. Simon Pezzutto & Gianluca Grilli & Stefano Zambotti & Stefan Dunjic, 2018. "Forecasting Electricity Market Price for End Users in EU28 until 2020—Main Factors of Influence," Energies, MDPI, vol. 11(6), pages 1-18, June.
    12. Grzegorz Marcjasz & Tomasz Serafin & Rafał Weron, 2018. "Selection of Calibration Windows for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 11(9), pages 1-20, September.
    13. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    14. Raviv, Eran & Bouwman, Kees E. & van Dijk, Dick, 2015. "Forecasting day-ahead electricity prices: Utilizing hourly prices," Energy Economics, Elsevier, vol. 50(C), pages 227-239.
    15. Alexandre Lucas & Konstantinos Pegios & Evangelos Kotsakis & Dan Clarke, 2020. "Price Forecasting for the Balancing Energy Market Using Machine-Learning Regression," Energies, MDPI, vol. 13(20), pages 1-16, October.
    16. Weron, Rafał & Zator, Michał, 2015. "A note on using the Hodrick–Prescott filter in electricity markets," Energy Economics, Elsevier, vol. 48(C), pages 1-6.
    17. Shadi Tehrani & Jesús Juan & Eduardo Caro, 2022. "Electricity Spot Price Modeling and Forecasting in European Markets," Energies, MDPI, vol. 15(16), pages 1-23, August.
    18. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    19. Barman, Mayur & Dev Choudhury, N.B. & Sutradhar, Suman, 2018. "A regional hybrid GOA-SVM model based on similar day approach for short-term load forecasting in Assam, India," Energy, Elsevier, vol. 145(C), pages 710-720.
    20. Brenda López Cabrera & Franziska Schulz, 2017. "Forecasting Generalized Quantiles of Electricity Demand: A Functional Data Approach," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 127-136, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1547-:d:114315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.