IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p6893-d1251236.html
   My bibliography  Save this article

Analyzing Long-Term and High Instantaneous Power Consumption of Buildings from Smart Meter Big Data with Deep Learning and Knowledge Graph Techniques

Author

Listed:
  • Ru-Guan Wang

    (Information Technology for Disaster Prevention (IT) Program, Department of Civil Engineering, National Central University, Taoyuan 32001, Taiwan)

  • Wen-Jen Ho

    (Digital Transformation, Institute for Information Industry, Taipei 10574, Taiwan)

  • Kuei-Chun Chiang

    (Digital Transformation, Institute for Information Industry, Taipei 10574, Taiwan)

  • Yung-Chieh Hung

    (Digital Transformation, Institute for Information Industry, Taipei 10574, Taiwan)

  • Jen-Kuo Tai

    (Information Technology for Disaster Prevention (IT) Program, Department of Civil Engineering, National Central University, Taoyuan 32001, Taiwan)

  • Jia-Cheng Tan

    (Information Technology for Disaster Prevention (IT) Program, Department of Civil Engineering, National Central University, Taoyuan 32001, Taiwan)

  • Mei-Ling Chuang

    (Information Technology for Disaster Prevention (IT) Program, Department of Civil Engineering, National Central University, Taoyuan 32001, Taiwan)

  • Chi-Yun Ke

    (Information Technology for Disaster Prevention (IT) Program, Department of Civil Engineering, National Central University, Taoyuan 32001, Taiwan)

  • Yi-Fan Chien

    (Information Technology for Disaster Prevention (IT) Program, Department of Civil Engineering, National Central University, Taoyuan 32001, Taiwan
    Taoyuan Fire Department, Taoyuan 33054, Taiwan)

  • An-Ping Jeng

    (Information Technology for Disaster Prevention (IT) Program, Department of Civil Engineering, National Central University, Taoyuan 32001, Taiwan
    Taoyuan Fire Department, Taoyuan 33054, Taiwan)

  • Chien-Cheng Chou

    (Information Technology for Disaster Prevention (IT) Program, Department of Civil Engineering, National Central University, Taoyuan 32001, Taiwan)

Abstract

In the context of the growing emphasis on energy conservation and carbon reduction, the widespread deployment of smart meters in residential and commercial buildings is instrumental in promoting electricity savings. In Taiwan, local governments are actively promoting the installation of smart meters, empowering residents to monitor their electricity consumption and detect abnormal usage patterns, thus mitigating the risk of electrical fires. This safety-oriented approach is a significant driver behind the adoption of smart meters. However, the analysis of the substantial data generated by these meters necessitates pre-processing to address anomalies. Presently, these data primarily serve billing calculations or the extraction of power-saving patterns through big data analytics. To address these challenges, this study proposes a comprehensive approach that integrates a relational database for storing electricity consumption data with knowledge graphs. This integrated method effectively addresses data scarcity at various time scales and identifies prolonged periods of excessive electricity consumption, enabling timely alerts to residents for specific appliance shutdowns. Deep learning techniques are employed to analyze historical consumption data and real-time smart meter readings, with the goal of identifying and mitigating hazardous usage behavior, consequently reducing the risk of electrical fires. The research includes numerical values and text-based predictions for a comprehensive evaluation, utilizing data from ten Taiwanese households in 2022. The anticipated outcome is an improvement in household electrical safety and enhanced energy efficiency.

Suggested Citation

  • Ru-Guan Wang & Wen-Jen Ho & Kuei-Chun Chiang & Yung-Chieh Hung & Jen-Kuo Tai & Jia-Cheng Tan & Mei-Ling Chuang & Chi-Yun Ke & Yi-Fan Chien & An-Ping Jeng & Chien-Cheng Chou, 2023. "Analyzing Long-Term and High Instantaneous Power Consumption of Buildings from Smart Meter Big Data with Deep Learning and Knowledge Graph Techniques," Energies, MDPI, vol. 16(19), pages 1-24, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6893-:d:1251236
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/6893/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/6893/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Navonita Sharma & Ajoy Kumar Chakraborty, 2022. "Implementation of Dynamic Controls for Grid-Tied-Inverters through Next-Generation Smart Meters and Its Application in Modernized Grid," Energies, MDPI, vol. 15(3), pages 1-14, January.
    2. Yousaf Murtaza Rind & Muhammad Haseeb Raza & Muhammad Zubair & Muhammad Qasim Mehmood & Yehia Massoud, 2023. "Smart Energy Meters for Smart Grids, an Internet of Things Perspective," Energies, MDPI, vol. 16(4), pages 1-35, February.
    3. Somu, Nivethitha & M R, Gauthama Raman & Ramamritham, Krithi, 2020. "A hybrid model for building energy consumption forecasting using long short term memory networks," Applied Energy, Elsevier, vol. 261(C).
    4. Shailendra Singh & Abdulsalam Yassine, 2018. "Big Data Mining of Energy Time Series for Behavioral Analytics and Energy Consumption Forecasting," Energies, MDPI, vol. 11(2), pages 1-26, February.
    5. Zhen Jiang & Di Shi & Xiaobin Guo & Guangyue Xu & Li Yu & Chaoyang Jing, 2018. "Robust Smart Meter Data Analytics Using Smoothed ALS and Dynamic Time Warping," Energies, MDPI, vol. 11(6), pages 1-13, May.
    6. Balaji, Bharathan & Bhattacharya, Arka & Fierro, Gabriel & Gao, Jingkun & Gluck, Joshua & Hong, Dezhi & Johansen, Aslak & Koh, Jason & Ploennigs, Joern & Agarwal, Yuvraj & Bergés, Mario & Culler, Davi, 2018. "Brick : Metadata schema for portable smart building applications," Applied Energy, Elsevier, vol. 226(C), pages 1273-1292.
    7. Jacqueline Nicole Adams & Zsófia Deme Bélafi & Miklós Horváth & János Balázs Kocsis & Tamás Csoknyai, 2021. "How Smart Meter Data Analysis Can Support Understanding the Impact of Occupant Behavior on Building Energy Performance: A Comprehensive Review," Energies, MDPI, vol. 14(9), pages 1-23, April.
    8. Filippos Lygerakis & Nikos Kampelis & Dionysia Kolokotsa, 2022. "Knowledge Graphs’ Ontologies and Applications for Energy Efficiency in Buildings: A Review," Energies, MDPI, vol. 15(20), pages 1-32, October.
    9. Anvari-Moghaddam, Amjad & Rahimi-Kian, Ashkan & Mirian, Maryam S. & Guerrero, Josep M., 2017. "A multi-agent based energy management solution for integrated buildings and microgrid system," Applied Energy, Elsevier, vol. 203(C), pages 41-56.
    10. Stankovic, L. & Stankovic, V. & Liao, J. & Wilson, C., 2016. "Measuring the energy intensity of domestic activities from smart meter data," Applied Energy, Elsevier, vol. 183(C), pages 1565-1580.
    11. Wang, Jian Qi & Du, Yu & Wang, Jing, 2020. "LSTM based long-term energy consumption prediction with periodicity," Energy, Elsevier, vol. 197(C).
    12. Vangelis Marinakis, 2020. "Big Data for Energy Management and Energy-Efficient Buildings," Energies, MDPI, vol. 13(7), pages 1-18, March.
    13. Saehong Park & Seunghyoung Ryu & Yohwan Choi & Jihyo Kim & Hongseok Kim, 2015. "Data-Driven Baseline Estimation of Residential Buildings for Demand Response," Energies, MDPI, vol. 8(9), pages 1-21, September.
    14. Anwar Ul Haq & Hans-Arno Jacobsen, 2018. "Prospects of Appliance-Level Load Monitoring in Off-the-Shelf Energy Monitors: A Technical Review," Energies, MDPI, vol. 11(1), pages 1-22, January.
    15. Andreas Reinhardt & Lucas Pereira, 2021. "Special Issue: “Energy Data Analytics for Smart Meter Data”," Energies, MDPI, vol. 14(17), pages 1-3, August.
    16. Marco Toledo-Orozco & Carlos Arias-Marin & Carlos Álvarez-Bel & Diego Morales-Jadan & Javier Rodríguez-García & Eddy Bravo-Padilla, 2021. "Innovative Methodology to Identify Errors in Electric Energy Measurement Systems in Power Utilities," Energies, MDPI, vol. 14(4), pages 1-23, February.
    17. Marco Pritoni & Drew Paine & Gabriel Fierro & Cory Mosiman & Michael Poplawski & Avijit Saha & Joel Bender & Jessica Granderson, 2021. "Metadata Schemas and Ontologies for Building Energy Applications: A Critical Review and Use Case Analysis," Energies, MDPI, vol. 14(7), pages 1-37, April.
    18. Tania Cerquitelli & Giovanni Malnati & Daniele Apiletti, 2019. "Exploiting Scalable Machine-Learning Distributed Frameworks to Forecast Power Consumption of Buildings," Energies, MDPI, vol. 12(15), pages 1-18, July.
    19. Chih-Hsiung Chang & Mei-Ling Chuang & Jia-Cheng Tan & Chuen-Chyi Hsieh & Chien-Cheng Chou, 2022. "Indoor Safety Monitoring for Falls or Restricted Areas Using Wi-Fi Channel State Information and Deep Learning Methods in Mega Building Construction Projects," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    20. Zhan, Sicheng & Liu, Zhaoru & Chong, Adrian & Yan, Da, 2020. "Building categorization revisited: A clustering-based approach to using smart meter data for building energy benchmarking," Applied Energy, Elsevier, vol. 269(C).
    21. Ahmadi-Karvigh, Simin & Ghahramani, Ali & Becerik-Gerber, Burcin & Soibelman, Lucio, 2018. "Real-time activity recognition for energy efficiency in buildings," Applied Energy, Elsevier, vol. 211(C), pages 146-160.
    22. Roberto Chiosa & Marco Savino Piscitelli & Alfonso Capozzoli, 2021. "A Data Analytics-Based Energy Information System (EIS) Tool to Perform Meter-Level Anomaly Detection and Diagnosis in Buildings," Energies, MDPI, vol. 14(1), pages 1-28, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    2. Filippos Lygerakis & Nikos Kampelis & Dionysia Kolokotsa, 2022. "Knowledge Graphs’ Ontologies and Applications for Energy Efficiency in Buildings: A Review," Energies, MDPI, vol. 15(20), pages 1-32, October.
    3. Paweł Dymora & Mirosław Mazurek & Bartosz Sudek, 2021. "Comparative Analysis of Selected Open-Source Solutions for Traffic Balancing in Server Infrastructures Providing WWW Service," Energies, MDPI, vol. 14(22), pages 1-23, November.
    4. Haizhou Fang & Hongwei Tan & Ningfang Dai & Zhaohui Liu & Risto Kosonen, 2023. "Hourly Building Energy Consumption Prediction Using a Training Sample Selection Method Based on Key Feature Search," Sustainability, MDPI, vol. 15(9), pages 1-23, May.
    5. Li, Guannan & Li, Fan & Ahmad, Tanveer & Liu, Jiangyan & Li, Tao & Fang, Xi & Wu, Yubei, 2022. "Performance evaluation of sequence-to-sequence-Attention model for short-term multi-step ahead building energy predictions," Energy, Elsevier, vol. 259(C).
    6. Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
    7. Kwok Tai Chui & Miltiadis D. Lytras & Anna Visvizi, 2018. "Energy Sustainability in Smart Cities: Artificial Intelligence, Smart Monitoring, and Optimization of Energy Consumption," Energies, MDPI, vol. 11(11), pages 1-20, October.
    8. Haben, Stephen & Arora, Siddharth & Giasemidis, Georgios & Voss, Marcus & Vukadinović Greetham, Danica, 2021. "Review of low voltage load forecasting: Methods, applications, and recommendations," Applied Energy, Elsevier, vol. 304(C).
    9. Sulzer, Matthias & Wetter, Michael & Mutschler, Robin & Sangiovanni-Vincentelli, Alberto, 2023. "Platform-based design for energy systems," Applied Energy, Elsevier, vol. 352(C).
    10. Marco Pau & Panagiotis Kapsalis & Zhiyu Pan & George Korbakis & Dario Pellegrino & Antonello Monti, 2022. "MATRYCS—A Big Data Architecture for Advanced Services in the Building Domain," Energies, MDPI, vol. 15(7), pages 1-22, April.
    11. Elsa Chaerun Nisa & Yean-Der Kuan, 2021. "Comparative Assessment to Predict and Forecast Water-Cooled Chiller Power Consumption Using Machine Learning and Deep Learning Algorithms," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
    12. J. R. S. Iruela & L. G. B. Ruiz & M. I. Capel & M. C. Pegalajar, 2021. "A TensorFlow Approach to Data Analysis for Time Series Forecasting in the Energy-Efficiency Realm," Energies, MDPI, vol. 14(13), pages 1-22, July.
    13. Yimin Chen & Guanjing Lin & Eliot Crowe & Jessica Granderson, 2021. "Development of a Unified Taxonomy for HVAC System Faults," Energies, MDPI, vol. 14(17), pages 1-25, September.
    14. Zhiyu Pan & Guanchen Pan & Antonello Monti, 2022. "Semantic-Similarity-Based Schema Matching for Management of Building Energy Data," Energies, MDPI, vol. 15(23), pages 1-23, November.
    15. Gema Hernández-Moral & Sofía Mulero-Palencia & Víctor Iván Serna-González & Carla Rodríguez-Alonso & Roberto Sanz-Jimeno & Vangelis Marinakis & Nikos Dimitropoulos & Zoi Mylona & Daniele Antonucci & H, 2021. "Big Data Value Chain: Multiple Perspectives for the Built Environment," Energies, MDPI, vol. 14(15), pages 1-21, July.
    16. Rashid, Haroon & Singh, Pushpendra & Stankovic, Vladimir & Stankovic, Lina, 2019. "Can non-intrusive load monitoring be used for identifying an appliance’s anomalous behaviour?," Applied Energy, Elsevier, vol. 238(C), pages 796-805.
    17. Abdulgani Kahraman & Mehmed Kantardzic & Muhammet Mustafa Kahraman & Muhammed Kotan, 2021. "A Data-Driven Multi-Regime Approach for Predicting Energy Consumption," Energies, MDPI, vol. 14(20), pages 1-17, October.
    18. Luo, Na & Pritoni, Marco & Hong, Tianzhen, 2021. "An overview of data tools for representing and managing building information and performance data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    19. Mustaffa, Nur Kamaliah & Kudus, Sakhiah Abdul, 2022. "Challenges and way forward towards best practices of energy efficient building in Malaysia," Energy, Elsevier, vol. 259(C).
    20. Xinghua Wang & Fucheng Zhong & Yilin Xu & Xixian Liu & Zezhong Li & Jianan Liu & Zhuoli Zhao, 2023. "Extraction and Joint Method of PV–Load Typical Scenes Considering Temporal and Spatial Distribution Characteristics," Energies, MDPI, vol. 16(18), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6893-:d:1251236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.