IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6763-d658352.html
   My bibliography  Save this article

A Data-Driven Multi-Regime Approach for Predicting Energy Consumption

Author

Listed:
  • Abdulgani Kahraman

    (Department of Computer Science and Engineering, University of Louisville, Louisville, KY 40292, USA)

  • Mehmed Kantardzic

    (Department of Computer Science and Engineering, University of Louisville, Louisville, KY 40292, USA)

  • Muhammet Mustafa Kahraman

    (Department of Mining Engineering, Gumushane University, Gumushane 29100, Turkey)

  • Muhammed Kotan

    (Department of Information Systems Engineering, Sakarya University, Sakarya 54050, Turkey)

Abstract

There has been increasing interest in reducing carbon footprints globally in recent years. Hence increasing share of green energy and energy efficiency are promoted by governments. Therefore, optimizing energy consumption is becoming more critical for people, companies, industries, and the environment. Predicting energy consumption more precisely means that future energy management planning can be more effective. To date, most research papers have focused on predicting residential building energy consumption; however, a large portion of the energy is consumed by industrial machines. Prediction of energy consumption of large industrial machines in real time is challenging due to concept drift, in which prediction performance deteriorates over time. In this research, a novel data-driven method multi-regime approach (MRA) was developed to better predict the energy consumption for industrial machines. Whereas most papers have focused on finding an excellent prediction model that contradicts the no-free-lunch theorem, this study concentrated on adding potential concept drift points into the prediction process. A real-world dataset was collected from a semi-autonomous grinding (SAG) mill used as a data source, and a deep neural network was utilized as a prediction model for the MRA method. The results proved that the MRA method enables the detection of multi-regimes over time and provides a highly accurate prediction performance, thanks to the dynamic model approach.

Suggested Citation

  • Abdulgani Kahraman & Mehmed Kantardzic & Muhammet Mustafa Kahraman & Muhammed Kotan, 2021. "A Data-Driven Multi-Regime Approach for Predicting Energy Consumption," Energies, MDPI, vol. 14(20), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6763-:d:658352
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6763/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6763/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tso, Geoffrey K.F. & Yau, Kelvin K.W., 2007. "Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks," Energy, Elsevier, vol. 32(9), pages 1761-1768.
    2. Liu, Xialu & Chen, Rong, 2020. "Threshold factor models for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 216(1), pages 53-70.
    3. Shailendra Singh & Abdulsalam Yassine, 2018. "Big Data Mining of Energy Time Series for Behavioral Analytics and Energy Consumption Forecasting," Energies, MDPI, vol. 11(2), pages 1-26, February.
    4. Federico Divina & Miguel García Torres & Francisco A. Goméz Vela & José Luis Vázquez Noguera, 2019. "A Comparative Study of Time Series Forecasting Methods for Short Term Electric Energy Consumption Prediction in Smart Buildings," Energies, MDPI, vol. 12(10), pages 1-23, May.
    5. Yi-Chung Hu, 2017. "Electricity consumption prediction using a neural-network-based grey forecasting approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1259-1264, October.
    6. Wang, Jian Qi & Du, Yu & Wang, Jing, 2020. "LSTM based long-term energy consumption prediction with periodicity," Energy, Elsevier, vol. 197(C).
    7. Kankal, Murat & AkpInar, Adem & Kömürcü, Murat Ihsan & Özsahin, Talat Sükrü, 2011. "Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables," Applied Energy, Elsevier, vol. 88(5), pages 1927-1939, May.
    8. Francesco Battaglia & Mattheos K. Protopapas, 2010. "Multi-regime models for nonlinear nonstationary time series," Working Papers 026, COMISEF.
    9. Jin-Young Kim & Sung-Bae Cho, 2019. "Electric Energy Consumption Prediction by Deep Learning with State Explainable Autoencoder," Energies, MDPI, vol. 12(4), pages 1-14, February.
    10. Xiao, Jin & Li, Yuxi & Xie, Ling & Liu, Dunhu & Huang, Jing, 2018. "A hybrid model based on selective ensemble for energy consumption forecasting in China," Energy, Elsevier, vol. 159(C), pages 534-546.
    11. He, Yan & Wu, Pengcheng & Li, Yufeng & Wang, Yulin & Tao, Fei & Wang, Yan, 2020. "A generic energy prediction model of machine tools using deep learning algorithms," Applied Energy, Elsevier, vol. 275(C).
    12. Omer Berat Sezer & Mehmet Ugur Gudelek & Ahmet Murat Ozbayoglu, 2019. "Financial Time Series Forecasting with Deep Learning : A Systematic Literature Review: 2005-2019," Papers 1911.13288, arXiv.org.
    13. Tim Hill & Marcus O'Connor & William Remus, 1996. "Neural Network Models for Time Series Forecasts," Management Science, INFORMS, vol. 42(7), pages 1082-1092, July.
    14. Zhao, G.Y. & Liu, Z.Y. & He, Y. & Cao, H.J. & Guo, Y.B., 2017. "Energy consumption in machining: Classification, prediction, and reduction strategy," Energy, Elsevier, vol. 133(C), pages 142-157.
    15. Tyler McCandless & Susan Dettling & Sue Ellen Haupt, 2020. "Comparison of Implicit vs. Explicit Regime Identification in Machine Learning Methods for Solar Irradiance Prediction," Energies, MDPI, vol. 13(3), pages 1-14, February.
    16. Myoungsoo Kim & Wonik Choi & Youngjun Jeon & Ling Liu, 2019. "A Hybrid Neural Network Model for Power Demand Forecasting," Energies, MDPI, vol. 12(5), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meihang Zhang & Hua Zhang & Wei Yan & Zhigang Jiang & Shuo Zhu, 2023. "An Integrated Deep-Learning-Based Approach for Energy Consumption Prediction of Machining Systems," Sustainability, MDPI, vol. 15(7), pages 1-17, March.
    2. Deyslen Mariano-Hernández & Luis Hernández-Callejo & Martín Solís & Angel Zorita-Lamadrid & Oscar Duque-Pérez & Luis Gonzalez-Morales & Felix Santos García & Alvaro Jaramillo-Duque & Adalberto Ospino-, 2022. "Analysis of the Integration of Drift Detection Methods in Learning Algorithms for Electrical Consumption Forecasting in Smart Buildings," Sustainability, MDPI, vol. 14(10), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seok-Jun Bu & Sung-Bae Cho, 2020. "Time Series Forecasting with Multi-Headed Attention-Based Deep Learning for Residential Energy Consumption," Energies, MDPI, vol. 13(18), pages 1-16, September.
    2. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    3. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
    4. Chen, Jiandong & Xu, Chong & Shahbaz, Muhammad & Song, Malin, 2021. "Interaction determinants and projections of China’s energy consumption: 1997–2030," Applied Energy, Elsevier, vol. 283(C).
    5. Jessica Walther & Matthias Weigold, 2021. "A Systematic Review on Predicting and Forecasting the Electrical Energy Consumption in the Manufacturing Industry," Energies, MDPI, vol. 14(4), pages 1-24, February.
    6. Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
    7. Yuehjen E. Shao & Yi-Shan Tsai, 2018. "Electricity Sales Forecasting Using Hybrid Autoregressive Integrated Moving Average and Soft Computing Approaches in the Absence of Explanatory Variables," Energies, MDPI, vol. 11(7), pages 1-22, July.
    8. Liu, Gang & Wang, Kun & Hao, Xiaochen & Zhang, Zhipeng & Zhao, Yantao & Xu, Qingquan, 2022. "SA-LSTMs: A new advance prediction method of energy consumption in cement raw materials grinding system," Energy, Elsevier, vol. 241(C).
    9. Hongyi Wu & Xuanyi Wang & Xiaolei Deng & Hongyao Shen & Xinhua Yao, 2024. "Review on Design Research in CNC Machine Tools Based on Energy Consumption," Sustainability, MDPI, vol. 16(2), pages 1-20, January.
    10. Fath U Min Ullah & Noman Khan & Tanveer Hussain & Mi Young Lee & Sung Wook Baik, 2021. "Diving Deep into Short-Term Electricity Load Forecasting: Comparative Analysis and a Novel Framework," Mathematics, MDPI, vol. 9(6), pages 1-22, March.
    11. Benedetti, Miriam & Cesarotti, Vittorio & Introna, Vito & Serranti, Jacopo, 2016. "Energy consumption control automation using Artificial Neural Networks and adaptive algorithms: Proposal of a new methodology and case study," Applied Energy, Elsevier, vol. 165(C), pages 60-71.
    12. do Carmo, Pedro R.X. & do Monte, João Victor L. & Filho, Assis T. de Oliveira & Freitas, Eduardo & Tigre, Matheus F.F.S.L. & Sadok, Djamel & Kelner, Judith, 2023. "A data-driven model for the optimization of energy consumption of an industrial production boiler in a fiber plant," Energy, Elsevier, vol. 284(C).
    13. Kasım Zor & Özgür Çelik & Oğuzhan Timur & Ahmet Teke, 2020. "Short-Term Building Electrical Energy Consumption Forecasting by Employing Gene Expression Programming and GMDH Networks," Energies, MDPI, vol. 13(5), pages 1-24, March.
    14. Salam, Abdulwahed & El Hibaoui, Abdelaaziz, 2021. "Energy consumption prediction model with deep inception residual network inspiration and LSTM," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 97-109.
    15. Joanna Henzel & Łukasz Wróbel & Marcin Fice & Marek Sikora, 2022. "Energy Consumption Forecasting for the Digital-Twin Model of the Building," Energies, MDPI, vol. 15(12), pages 1-21, June.
    16. Nsangou, Jean Calvin & Kenfack, Joseph & Nzotcha, Urbain & Ngohe Ekam, Paul Salomon & Voufo, Joseph & Tamo, Thomas T., 2022. "Explaining household electricity consumption using quantile regression, decision tree and artificial neural network," Energy, Elsevier, vol. 250(C).
    17. Yu, Miao & Zhao, Xintong & Gao, Yuning, 2019. "Factor decomposition of China’s industrial electricity consumption using structural decomposition analysis," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 67-76.
    18. Shao, Zhen & Chao, Fu & Yang, Shan-Lin & Zhou, Kai-Le, 2017. "A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 123-136.
    19. Ru-Guan Wang & Wen-Jen Ho & Kuei-Chun Chiang & Yung-Chieh Hung & Jen-Kuo Tai & Jia-Cheng Tan & Mei-Ling Chuang & Chi-Yun Ke & Yi-Fan Chien & An-Ping Jeng & Chien-Cheng Chou, 2023. "Analyzing Long-Term and High Instantaneous Power Consumption of Buildings from Smart Meter Big Data with Deep Learning and Knowledge Graph Techniques," Energies, MDPI, vol. 16(19), pages 1-24, September.
    20. Liyang Tang, 2020. "Application of Nonlinear Autoregressive with Exogenous Input (NARX) neural network in macroeconomic forecasting, national goal setting and global competitiveness assessment," Papers 2005.08735, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6763-:d:658352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.