IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i5p931-d212625.html
   My bibliography  Save this article

A Hybrid Neural Network Model for Power Demand Forecasting

Author

Listed:
  • Myoungsoo Kim

    (Department of Information and Communication Engineering, Inha University, Incheon 22212, Korea)

  • Wonik Choi

    (Department of Information and Communication Engineering, Inha University, Incheon 22212, Korea)

  • Youngjun Jeon

    (Dawul Geoinfo Co., Seoul 08377, Korea)

  • Ling Liu

    (College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA)

Abstract

The problem of power demand forecasting for the effective planning and operation of smart grid, renewable energy and electricity market bidding systems is an open challenge. Numerous research efforts have been proposed for improving prediction performance in practical environments through statistical and artificial neural network approaches. Despite these efforts, power demand forecasting problems remain to be a grand challenge since existing methods are not sufficiently practical to be widely deployed due to their limited accuracy. To address this problem, we propose a hybrid power demand forecasting model, called ( c , l )-Long Short-Term Memory (LSTM) + Convolution Neural Network (CNN). We consider the power demand as a key value, while we incorporate c different types of contextual information such as temperature, humidity and season as context values in order to preprocess datasets into bivariate sequences consisting of pairs. These c bivariate sequences are then input into c LSTM networks with l layers to extract feature sets. Using these feature sets, a CNN layer outputs a predicted profile of power demand. To assess the applicability of the proposed hybrid method, we conduct extensive experiments using real-world datasets. The results of the experiments indicate that the proposed ( c , l )-LSTM+CNN hybrid model performs with higher accuracy than previous approaches.

Suggested Citation

  • Myoungsoo Kim & Wonik Choi & Youngjun Jeon & Ling Liu, 2019. "A Hybrid Neural Network Model for Power Demand Forecasting," Energies, MDPI, vol. 12(5), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:931-:d:212625
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/5/931/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/5/931/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hamid R. Khosravani & María Del Mar Castilla & Manuel Berenguel & Antonio E. Ruano & Pedro M. Ferreira, 2016. "A Comparison of Energy Consumption Prediction Models Based on Neural Networks of a Bioclimatic Building," Energies, MDPI, vol. 9(1), pages 1-24, January.
    2. Seunghyoung Ryu & Jaekoo Noh & Hongseok Kim, 2016. "Deep Neural Network Based Demand Side Short Term Load Forecasting," Energies, MDPI, vol. 10(1), pages 1-20, December.
    3. Chujie Tian & Jian Ma & Chunhong Zhang & Panpan Zhan, 2018. "A Deep Neural Network Model for Short-Term Load Forecast Based on Long Short-Term Memory Network and Convolutional Neural Network," Energies, MDPI, vol. 11(12), pages 1-13, December.
    4. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A High Precision Artificial Neural Networks Model for Short-Term Energy Load Forecasting," Energies, MDPI, vol. 11(1), pages 1-13, January.
    5. Ke Yan & Xudong Wang & Yang Du & Ning Jin & Haichao Huang & Hangxia Zhou, 2018. "Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy," Energies, MDPI, vol. 11(11), pages 1-15, November.
    6. Yuan, Chaoqing & Liu, Sifeng & Fang, Zhigeng, 2016. "Comparison of China's primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM(1,1) model," Energy, Elsevier, vol. 100(C), pages 384-390.
    7. Bair, Eric & Hastie, Trevor & Paul, Debashis & Tibshirani, Robert, 2006. "Prediction by Supervised Principal Components," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 119-137, March.
    8. J W Taylor, 2003. "Short-term electricity demand forecasting using double seasonal exponential smoothing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 799-805, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreea Valeria Vesa & Tudor Cioara & Ionut Anghel & Marcel Antal & Claudia Pop & Bogdan Iancu & Ioan Salomie & Vasile Teodor Dadarlat, 2020. "Energy Flexibility Prediction for Data Center Engagement in Demand Response Programs," Sustainability, MDPI, vol. 12(4), pages 1-23, February.
    2. Salam, Abdulwahed & El Hibaoui, Abdelaaziz, 2021. "Energy consumption prediction model with deep inception residual network inspiration and LSTM," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 97-109.
    3. Vattanak Sok & Sun-Woo Lee & Sang-Hee Kang & Soon-Ryul Nam, 2022. "Deep Neural Network-Based Removal of a Decaying DC Offset in Less Than One Cycle for Digital Relaying," Energies, MDPI, vol. 15(7), pages 1-14, April.
    4. Shubhra Paul & Lauren B. Davis, 2022. "An ensemble forecasting model for predicting contribution of food donors based on supply behavior," Annals of Operations Research, Springer, vol. 319(1), pages 1-29, December.
    5. Peng Liu & Peijun Zheng & Ziyu Chen, 2019. "Deep Learning with Stacked Denoising Auto-Encoder for Short-Term Electric Load Forecasting," Energies, MDPI, vol. 12(12), pages 1-15, June.
    6. Chaturvedi, Shobhit & Rajasekar, Elangovan & Natarajan, Sukumar & McCullen, Nick, 2022. "A comparative assessment of SARIMA, LSTM RNN and Fb Prophet models to forecast total and peak monthly energy demand for India," Energy Policy, Elsevier, vol. 168(C).
    7. Ivan Lorencin & Nikola Anđelić & Vedran Mrzljak & Zlatan Car, 2019. "Genetic Algorithm Approach to Design of Multi-Layer Perceptron for Combined Cycle Power Plant Electrical Power Output Estimation," Energies, MDPI, vol. 12(22), pages 1-26, November.
    8. Carolina Deina & João Lucas Ferreira dos Santos & Lucas Henrique Biuk & Mauro Lizot & Attilio Converti & Hugo Valadares Siqueira & Flavio Trojan, 2023. "Forecasting Electricity Demand by Neural Networks and Definition of Inputs by Multi-Criteria Analysis," Energies, MDPI, vol. 16(4), pages 1-24, February.
    9. Dana-Mihaela Petroșanu & Alexandru Pîrjan, 2020. "Electricity Consumption Forecasting Based on a Bidirectional Long-Short-Term Memory Artificial Neural Network," Sustainability, MDPI, vol. 13(1), pages 1-31, December.
    10. Sun-Bin Kim & Vattanak Sok & Sang-Hee Kang & Nam-Ho Lee & Soon-Ryul Nam, 2019. "A Study on Deep Neural Network-Based DC Offset Removal for Phase Estimation in Power Systems," Energies, MDPI, vol. 12(9), pages 1-19, April.
    11. Abdulgani Kahraman & Mehmed Kantardzic & Muhammet Mustafa Kahraman & Muhammed Kotan, 2021. "A Data-Driven Multi-Regime Approach for Predicting Energy Consumption," Energies, MDPI, vol. 14(20), pages 1-17, October.
    12. Hang Zhao & Jun Zhang & Xiaohui Wang & Hongxia Yuan & Tianlu Gao & Chenxi Hu & Jing Yan, 2021. "The Economy and Policy Incorporated Computing System for Social Energy and Power Consumption Analysis," Sustainability, MDPI, vol. 13(18), pages 1-18, September.
    13. Mariusz Kmiecik, 2022. "Logistics Coordination Based on Inventory Management and Transportation Planning by Third-Party Logistics (3PL)," Sustainability, MDPI, vol. 14(13), pages 1-19, July.
    14. Gwiman Bak & Youngchul Bae, 2020. "Predicting the Amount of Electric Power Transaction Using Deep Learning Methods," Energies, MDPI, vol. 13(24), pages 1-30, December.
    15. Hasnain Iftikhar & Josue E. Turpo-Chaparro & Paulo Canas Rodrigues & Javier Linkolk López-Gonzales, 2023. "Day-Ahead Electricity Demand Forecasting Using a Novel Decomposition Combination Method," Energies, MDPI, vol. 16(18), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akylas Stratigakos & Athanasios Bachoumis & Vasiliki Vita & Elias Zafiropoulos, 2021. "Short-Term Net Load Forecasting with Singular Spectrum Analysis and LSTM Neural Networks," Energies, MDPI, vol. 14(14), pages 1-13, July.
    2. Md. Nazmul Hasan & Rafia Nishat Toma & Abdullah-Al Nahid & M M Manjurul Islam & Jong-Myon Kim, 2019. "Electricity Theft Detection in Smart Grid Systems: A CNN-LSTM Based Approach," Energies, MDPI, vol. 12(17), pages 1-18, August.
    3. Ke Yan & Xudong Wang & Yang Du & Ning Jin & Haichao Huang & Hangxia Zhou, 2018. "Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy," Energies, MDPI, vol. 11(11), pages 1-15, November.
    4. Yuhong Xie & Yuzuru Ueda & Masakazu Sugiyama, 2021. "A Two-Stage Short-Term Load Forecasting Method Using Long Short-Term Memory and Multilayer Perceptron," Energies, MDPI, vol. 14(18), pages 1-17, September.
    5. Pavel V. Matrenin & Vadim Z. Manusov & Alexandra I. Khalyasmaa & Dmitry V. Antonenkov & Stanislav A. Eroshenko & Denis N. Butusov, 2020. "Improving Accuracy and Generalization Performance of Small-Size Recurrent Neural Networks Applied to Short-Term Load Forecasting," Mathematics, MDPI, vol. 8(12), pages 1-17, December.
    6. Serrano-Guerrero, Xavier & Briceño-León, Marco & Clairand, Jean-Michel & Escrivá-Escrivá, Guillermo, 2021. "A new interval prediction methodology for short-term electric load forecasting based on pattern recognition," Applied Energy, Elsevier, vol. 297(C).
    7. Odin Foldvik Eikeland & Filippo Maria Bianchi & Harry Apostoleris & Morten Hansen & Yu-Cheng Chiou & Matteo Chiesa, 2021. "Predicting Energy Demand in Semi-Remote Arctic Locations," Energies, MDPI, vol. 14(4), pages 1-17, February.
    8. Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2019. "Single and Multi-Sequence Deep Learning Models for Short and Medium Term Electric Load Forecasting," Energies, MDPI, vol. 12(1), pages 1-21, January.
    9. Lintao Yang & Honggeng Yang, 2019. "Analysis of Different Neural Networks and a New Architecture for Short-Term Load Forecasting," Energies, MDPI, vol. 12(8), pages 1-23, April.
    10. Aftab Ahmed Almani & Xueshan Han, 2023. "Real-Time Pricing-Enabled Demand Response Using Long Short-Time Memory Deep Learning," Energies, MDPI, vol. 16(5), pages 1-13, March.
    11. Jihoon Moon & Sungwoo Park & Seungmin Rho & Eenjun Hwang, 2019. "A comparative analysis of artificial neural network architectures for building energy consumption forecasting," International Journal of Distributed Sensor Networks, , vol. 15(9), pages 15501477198, September.
    12. Wenting Zhao & Juanjuan Zhao & Xilong Yao & Zhixin Jin & Pan Wang, 2019. "A Novel Adaptive Intelligent Ensemble Model for Forecasting Primary Energy Demand," Energies, MDPI, vol. 12(7), pages 1-28, April.
    13. Andrea Menapace & Simone Santopietro & Rudy Gargano & Maurizio Righetti, 2021. "Stochastic Generation of District Heat Load," Energies, MDPI, vol. 14(17), pages 1-17, August.
    14. Hu, Junjie & López Cabrera, Brenda & Melzer, Awdesch, 2021. "Advanced statistical learning on short term load process forecasting," IRTG 1792 Discussion Papers 2021-020, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    15. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    16. Reham Alhindawi & Yousef Abu Nahleh & Arun Kumar & Nirajan Shiwakoti, 2020. "Projection of Greenhouse Gas Emissions for the Road Transport Sector Based on Multivariate Regression and the Double Exponential Smoothing Model," Sustainability, MDPI, vol. 12(21), pages 1-18, November.
    17. Kui Shen & Nan Song & Youngchul Kim & Chunqiao Tian & Shara D Rice & Michael J Gabrin & W Fraser Symmans & Lajos Pusztai & Jae K Lee, 2012. "A Systematic Evaluation of Multi-Gene Predictors for the Pathological Response of Breast Cancer Patients to Chemotherapy," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-9, November.
    18. Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
    19. Jiaan Zhang & Chenyu Liu & Leijiao Ge, 2022. "Short-Term Load Forecasting Model of Electric Vehicle Charging Load Based on MCCNN-TCN," Energies, MDPI, vol. 15(7), pages 1-25, April.
    20. Ding, Song & Tao, Zui & Zhang, Huahan & Li, Yao, 2022. "Forecasting nuclear energy consumption in China and America: An optimized structure-adaptative grey model," Energy, Elsevier, vol. 239(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:931-:d:212625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.