IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0285456.html
   My bibliography  Save this article

Multi-region electricity demand prediction with ensemble deep neural networks

Author

Listed:
  • Muhammad Irfan
  • Ahmad Shaf
  • Tariq Ali
  • Mariam Zafar
  • Saifur Rahman
  • Salim Nasar Faraj Mursal
  • Faisal AlThobiani
  • Majid A. Almas
  • H M Attar
  • Nagi Abdussamiee

Abstract

Electricity consumption prediction plays a vital role in intelligent energy management systems, and it is essential for electricity power supply companies to have accurate short and long-term energy predictions. In this study, a deep-ensembled neural network was used to anticipate hourly power utilization, providing a clear and effective approach for predicting power consumption. The dataset comprises of 13 files, each representing a different region, and ranges from 2004 to 2018, with two columns for the date, time, year and energy expenditure. The data was normalized using minmax scalar, and a deep ensembled (long short-term memory and recurrent neural network) model was used for energy consumption prediction. This proposed model effectively trains long-term dependencies in sequence order and has been assessed using several statistical metrics, including root mean squared error (RMSE), relative root mean squared error (rRMSE), mean absolute bias error (MABE), coefficient of determination (R2), mean bias error (MBE), and mean absolute percentage error (MAPE). Results show that the proposed model performs exceptionally well compared to existing models, indicating its effectiveness in accurately predicting energy consumption.

Suggested Citation

  • Muhammad Irfan & Ahmad Shaf & Tariq Ali & Mariam Zafar & Saifur Rahman & Salim Nasar Faraj Mursal & Faisal AlThobiani & Majid A. Almas & H M Attar & Nagi Abdussamiee, 2023. "Multi-region electricity demand prediction with ensemble deep neural networks," PLOS ONE, Public Library of Science, vol. 18(5), pages 1-23, May.
  • Handle: RePEc:plo:pone00:0285456
    DOI: 10.1371/journal.pone.0285456
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0285456
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0285456&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0285456?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sugiyarto Surono & Khang Wen Goh & Choo Wou Onn & Ferna Marestiani, 2023. "Developing an optimized recurrent neural network model for air quality prediction using K-means clustering and PCA dimension reduction," International Journal of Innovative Research and Scientific Studies, Innovative Research Publishing, vol. 6(2), pages 330-343.
    2. Apadula, Francesco & Bassini, Alessandra & Elli, Alberto & Scapin, Simone, 2012. "Relationships between meteorological variables and monthly electricity demand," Applied Energy, Elsevier, vol. 98(C), pages 346-356.
    3. Wang, Jianjun & Li, Li & Niu, Dongxiao & Tan, Zhongfu, 2012. "An annual load forecasting model based on support vector regression with differential evolution algorithm," Applied Energy, Elsevier, vol. 94(C), pages 65-70.
    4. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2017. "Artificial neural networks to predict energy performance and retrofit scenarios for any member of a building category: A novel approach," Energy, Elsevier, vol. 118(C), pages 999-1017.
    5. Myoungsoo Kim & Wonik Choi & Youngjun Jeon & Ling Liu, 2019. "A Hybrid Neural Network Model for Power Demand Forecasting," Energies, MDPI, vol. 12(5), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    2. Tulin Guzel & Hakan Cinar & Mehmet Nabi Cenet & Kamil Doruk Oguz & Ahmet Yucekaya & Mustafa Hekimoglu, 2023. "A Framework to Forecast Electricity Consumption of Meters using Automated Ranking and Data Preprocessing," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 179-193, September.
    3. Ali K k & Erg n Y kseltan & Mustafa Hekimo lu & Esra Agca Aktunc & Ahmet Y cekaya & Ay e Bilge, 2022. "Forecasting Hourly Electricity Demand Under COVID-19 Restrictions," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 73-85.
    4. Yukseltan, Ergun & Yucekaya, Ahmet & Bilge, Ayse Humeyra, 2017. "Forecasting electricity demand for Turkey: Modeling periodic variations and demand segregation," Applied Energy, Elsevier, vol. 193(C), pages 287-296.
    5. Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
    6. Guariso, Giorgio & Sangiorgio, Matteo, 2019. "Multi-objective planning of building stock renovation," Energy Policy, Elsevier, vol. 130(C), pages 101-110.
    7. Re Cecconi, F. & Moretti, N. & Tagliabue, L.C., 2019. "Application of artificial neutral network and geographic information system to evaluate retrofit potential in public school buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 266-277.
    8. Xiao, Liye & Shao, Wei & Liang, Tulu & Wang, Chen, 2016. "A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting," Applied Energy, Elsevier, vol. 167(C), pages 135-153.
    9. Koh, Rachel & Kern, Jordan & Galelli, Stefano, 2022. "Hard-coupling water and power system models increases the complementarity of renewable energy sources," Applied Energy, Elsevier, vol. 321(C).
    10. Bingjie Jin & Guihua Zeng & Zhilin Lu & Hongqiao Peng & Shuxin Luo & Xinhe Yang & Haojun Zhu & Mingbo Liu, 2022. "Hybrid LSTM–BPNN-to-BPNN Model Considering Multi-Source Information for Forecasting Medium- and Long-Term Electricity Peak Load," Energies, MDPI, vol. 15(20), pages 1-20, October.
    11. Harish, Santosh & Singh, Nishmeet & Tongia, Rahul, 2020. "Impact of temperature on electricity demand: Evidence from Delhi and Indian states," Energy Policy, Elsevier, vol. 140(C).
    12. Santágata, Daniela M. & Castesana, Paula & Rössler, Cristina E. & Gómez, Darío R., 2017. "Extreme temperature events affecting the electricity distribution system of the metropolitan area of Buenos Aires (1971–2013)," Energy Policy, Elsevier, vol. 106(C), pages 404-414.
    13. Oreshkin, Boris N. & Dudek, Grzegorz & Pełka, Paweł & Turkina, Ekaterina, 2021. "N-BEATS neural network for mid-term electricity load forecasting," Applied Energy, Elsevier, vol. 293(C).
    14. Dong, Ming & Shi, Jian & Shi, Qingxin, 2020. "Multi-year long-term load forecast for area distribution feeders based on selective sequence learning," Energy, Elsevier, vol. 206(C).
    15. Chun Yang & Shijun You & Yingzhu Han & Xuan Wang & Ji Li & Lu Wang, 2023. "Research on Optimization Method of Integrated Energy System Network Planning," Sustainability, MDPI, vol. 15(11), pages 1-15, May.
    16. Glotić, Arnel & Zamuda, Aleš, 2015. "Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution," Applied Energy, Elsevier, vol. 141(C), pages 42-56.
    17. Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).
    18. Jiyang Wang & Yuyang Gao & Xuejun Chen, 2018. "A Novel Hybrid Interval Prediction Approach Based on Modified Lower Upper Bound Estimation in Combination with Multi-Objective Salp Swarm Algorithm for Short-Term Load Forecasting," Energies, MDPI, vol. 11(6), pages 1-30, June.
    19. Miller, J. Isaac & Nam, Kyungsik, 2022. "Modeling peak electricity demand: A semiparametric approach using weather-driven cross-temperature response functions," Energy Economics, Elsevier, vol. 114(C).
    20. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0285456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.