IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i6p611-d515736.html
   My bibliography  Save this article

Diving Deep into Short-Term Electricity Load Forecasting: Comparative Analysis and a Novel Framework

Author

Listed:
  • Fath U Min Ullah

    (Sejong University, Seoul 143-747, Korea)

  • Noman Khan

    (Sejong University, Seoul 143-747, Korea)

  • Tanveer Hussain

    (Sejong University, Seoul 143-747, Korea)

  • Mi Young Lee

    (Sejong University, Seoul 143-747, Korea)

  • Sung Wook Baik

    (Sejong University, Seoul 143-747, Korea)

Abstract

In this article, we present an in-depth comparative analysis of the conventional and sequential learning algorithms for electricity load forecasting and optimally select the most appropriate algorithm for energy consumption prediction (ECP). ECP reduces the misusage and wastage of energy using mathematical modeling and supervised learning algorithms. However, the existing ECP research lacks comparative analysis of various algorithms to reach the optimal model with real-world implementation potentials and convincingly reduced error rates. Furthermore, these methods are less friendly towards the energy management chain between the smart grids and residential buildings, with limited contributions in saving energy resources and maintaining an appropriate equilibrium between energy producers and consumers. Considering these limitations, we dive deep into load forecasting methods, analyze their performance, and finally, present a novel three-tier framework for ECP. The first tier applies data preprocessing for its refinement and organization, prior to the actual training, facilitating its effective output generation. The second tier is the learning process, employing ensemble learning algorithms (ELAs) and sequential learning techniques to train over energy consumption data. In the third tier, we obtain the final ECP model and evaluate our method; we visualize the data for energy data analysts. We experimentally prove that deep sequential learning models are dominant over mathematical modeling techniques and its several invariants by utilizing available residential electricity consumption data to reach an optimal proposed model with smallest mean square error (MSE) of value 0.1661 and root mean square error (RMSE) of value 0.4075 against the recent rivals.

Suggested Citation

  • Fath U Min Ullah & Noman Khan & Tanveer Hussain & Mi Young Lee & Sung Wook Baik, 2021. "Diving Deep into Short-Term Electricity Load Forecasting: Comparative Analysis and a Novel Framework," Mathematics, MDPI, vol. 9(6), pages 1-22, March.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:6:p:611-:d:515736
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/6/611/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/6/611/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yao Zhang & Fan Lin & Ke Wang, 2020. "Robustness of Short-Term Wind Power Forecasting against False Data Injection Attacks," Energies, MDPI, vol. 13(15), pages 1-21, July.
    2. Kim, Tae-Young & Cho, Sung-Bae, 2019. "Predicting residential energy consumption using CNN-LSTM neural networks," Energy, Elsevier, vol. 182(C), pages 72-81.
    3. Guo, Yabin & Wang, Jiangyu & Chen, Huanxin & Li, Guannan & Liu, Jiangyan & Xu, Chengliang & Huang, Ronggeng & Huang, Yao, 2018. "Machine learning-based thermal response time ahead energy demand prediction for building heating systems," Applied Energy, Elsevier, vol. 221(C), pages 16-27.
    4. Wen, Lulu & Zhou, Kaile & Yang, Shanlin & Lu, Xinhui, 2019. "Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting," Energy, Elsevier, vol. 171(C), pages 1053-1065.
    5. Luo, Jian & Hong, Tao & Fang, Shu-Cherng, 2018. "Benchmarking robustness of load forecasting models under data integrity attacks," International Journal of Forecasting, Elsevier, vol. 34(1), pages 89-104.
    6. Kim, Suwon & Kim, Seongcheol, 2016. "A multi-criteria approach toward discovering killer IoT application in Korea," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 143-155.
    7. Sehrish Malik & DoHyeun Kim, 2018. "Prediction-Learning Algorithm for Efficient Energy Consumption in Smart Buildings Based on Particle Regeneration and Velocity Boost in Particle Swarm Optimization Neural Networks," Energies, MDPI, vol. 11(5), pages 1-21, May.
    8. Somu, Nivethitha & M R, Gauthama Raman & Ramamritham, Krithi, 2020. "A hybrid model for building energy consumption forecasting using long short term memory networks," Applied Energy, Elsevier, vol. 261(C).
    9. Hu, Huanling & Wang, Lin & Lv, Sheng-Xiang, 2020. "Forecasting energy consumption and wind power generation using deep echo state network," Renewable Energy, Elsevier, vol. 154(C), pages 598-613.
    10. Shaktipada Bhuniya & Biswajit Sarkar & Sarla Pareek, 2019. "Multi-Product Production System with the Reduced Failure Rate and the Optimum Energy Consumption under Variable Demand," Mathematics, MDPI, vol. 7(5), pages 1-20, May.
    11. Haben, Stephen & Ward, Jonathan & Vukadinovic Greetham, Danica & Singleton, Colin & Grindrod, Peter, 2014. "A new error measure for forecasts of household-level, high resolution electrical energy consumption," International Journal of Forecasting, Elsevier, vol. 30(2), pages 246-256.
    12. Fumo, Nelson & Rafe Biswas, M.A., 2015. "Regression analysis for prediction of residential energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 332-343.
    13. Cedric De Cauwer & Joeri Van Mierlo & Thierry Coosemans, 2015. "Energy Consumption Prediction for Electric Vehicles Based on Real-World Data," Energies, MDPI, vol. 8(8), pages 1-21, August.
    14. Zhong, Hai & Wang, Jiajun & Jia, Hongjie & Mu, Yunfei & Lv, Shilei, 2019. "Vector field-based support vector regression for building energy consumption prediction," Applied Energy, Elsevier, vol. 242(C), pages 403-414.
    15. Jin-Young Kim & Sung-Bae Cho, 2019. "Electric Energy Consumption Prediction by Deep Learning with State Explainable Autoencoder," Energies, MDPI, vol. 12(4), pages 1-14, February.
    16. He, Yan & Wu, Pengcheng & Li, Yufeng & Wang, Yulin & Tao, Fei & Wang, Yan, 2020. "A generic energy prediction model of machine tools using deep learning algorithms," Applied Energy, Elsevier, vol. 275(C).
    17. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikolaos Virtsionis Gkalinikis & Christoforos Nalmpantis & Dimitris Vrakas, 2022. "Torch-NILM: An Effective Deep Learning Toolkit for Non-Intrusive Load Monitoring in Pytorch," Energies, MDPI, vol. 15(7), pages 1-20, April.
    2. Khan, Zulfiqar Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2023. "Dual stream network with attention mechanism for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 338(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    2. Ding, Zhikun & Chen, Weilin & Hu, Ting & Xu, Xiaoxiao, 2021. "Evolutionary double attention-based long short-term memory model for building energy prediction: Case study of a green building," Applied Energy, Elsevier, vol. 288(C).
    3. Khan, Noman & Khan, Samee Ullah & Baik, Sung Wook, 2023. "Deep dive into hybrid networks: A comparative study and novel architecture for efficient power prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    4. Somu, Nivethitha & M R, Gauthama Raman & Ramamritham, Krithi, 2020. "A hybrid model for building energy consumption forecasting using long short term memory networks," Applied Energy, Elsevier, vol. 261(C).
    5. Somu, Nivethitha & Raman M R, Gauthama & Ramamritham, Krithi, 2021. "A deep learning framework for building energy consumption forecast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    7. Fan, Cheng & Sun, Yongjun & Xiao, Fu & Ma, Jie & Lee, Dasheng & Wang, Jiayuan & Tseng, Yen Chieh, 2020. "Statistical investigations of transfer learning-based methodology for short-term building energy predictions," Applied Energy, Elsevier, vol. 262(C).
    8. Tang, Lingfeng & Xie, Haipeng & Wang, Xiaoyang & Bie, Zhaohong, 2023. "Privacy-preserving knowledge sharing for few-shot building energy prediction: A federated learning approach," Applied Energy, Elsevier, vol. 337(C).
    9. Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
    10. Elsa Chaerun Nisa & Yean-Der Kuan, 2021. "Comparative Assessment to Predict and Forecast Water-Cooled Chiller Power Consumption Using Machine Learning and Deep Learning Algorithms," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
    11. Wenninger, Simon & Kaymakci, Can & Wiethe, Christian, 2022. "Explainable long-term building energy consumption prediction using QLattice," Applied Energy, Elsevier, vol. 308(C).
    12. Yue, Naihua & Caini, Mauro & Li, Lingling & Zhao, Yang & Li, Yu, 2023. "A comparison of six metamodeling techniques applied to multi building performance vectors prediction on gymnasiums under multiple climate conditions," Applied Energy, Elsevier, vol. 332(C).
    13. Sunil Kumar Mohapatra & Sushruta Mishra & Hrudaya Kumar Tripathy & Akash Kumar Bhoi & Paolo Barsocchi, 2021. "A Pragmatic Investigation of Energy Consumption and Utilization Models in the Urban Sector Using Predictive Intelligence Approaches," Energies, MDPI, vol. 14(13), pages 1-28, June.
    14. Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
    15. Gao, Lei & Liu, Tianyuan & Cao, Tao & Hwang, Yunho & Radermacher, Reinhard, 2021. "Comparing deep learning models for multi energy vectors prediction on multiple types of building," Applied Energy, Elsevier, vol. 301(C).
    16. Bampoulas, Adamantios & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2022. "An ensemble learning-based framework for assessing the energy flexibility of residential buildings with multicomponent energy systems," Applied Energy, Elsevier, vol. 315(C).
    17. Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
    18. dos Santos Ferreira, Greicili & Martins dos Santos, Deilson & Luciano Avila, Sérgio & Viana Luiz Albani, Vinicius & Cardoso Orsi, Gustavo & Cesar Cordeiro Vieira, Pedro & Nilson Rodrigues, Rafael, 2023. "Short- and long-term forecasting for building energy consumption considering IPMVP recommendations, WEO and COP27 scenarios," Applied Energy, Elsevier, vol. 339(C).
    19. Deb, Chirag & Dai, Zhonghao & Schlueter, Arno, 2021. "A machine learning-based framework for cost-optimal building retrofit," Applied Energy, Elsevier, vol. 294(C).
    20. Zheng, Peijun & Zhou, Heng & Liu, Jiang & Nakanishi, Yosuke, 2023. "Interpretable building energy consumption forecasting using spectral clustering algorithm and temporal fusion transformers architecture," Applied Energy, Elsevier, vol. 349(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:6:p:611-:d:515736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.