IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v299y2024ics0360544224012404.html
   My bibliography  Save this article

Multi-source domain generalization deep neural network model for predicting energy consumption in multiple office buildings

Author

Listed:
  • Jiang, Ben
  • Li, Yu
  • Rezgui, Yacine
  • Zhang, Chengyu
  • Wang, Peng
  • Zhao, Tianyi

Abstract

The effective prediction of building energy consumption can be used to optimize building operating modes and reduce the overall energy consumption and carbon emission of the building. To predict the energy consumption of the same type of building in the same area, it is often necessary to train separate prediction models for different buildings, which is usually costly computationally in order to get better prediction results. Therefore, this study will combine deep neural networks and multi-source domain generalization in an encoder-decoder architecture to train a model that can be directly applied to predict the energy consumption of multiple buildings in same type. In order to validate the predictive effectiveness of the model, it will be tested on real office building energy consumption dataset and different comparative experiments will be designed on the source and target domains. The results show that the constructed multi-source domain generalization model is able to accurately predict the energy consumption trend of different buildings 1 h in advance. It also has some energy consumption prediction ability for the unknow training set of buildings.

Suggested Citation

  • Jiang, Ben & Li, Yu & Rezgui, Yacine & Zhang, Chengyu & Wang, Peng & Zhao, Tianyi, 2024. "Multi-source domain generalization deep neural network model for predicting energy consumption in multiple office buildings," Energy, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224012404
    DOI: 10.1016/j.energy.2024.131467
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224012404
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131467?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224012404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.