IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v241y2021ics0925527321002267.html
   My bibliography  Save this article

Artificial intelligence applications in supply chain management

Author

Listed:
  • Pournader, Mehrdokht
  • Ghaderi, Hadi
  • Hassanzadegan, Amir
  • Fahimnia, Behnam

Abstract

This paper presents a systematic review of studies related to artificial intelligence (AI) applications in supply chain management (SCM). Our systematic search of the related literature identifies 150 journal articles published between 1998 and 2020. A thorough bibliometric analysis is completed to develop the past and present state of this literature. A co-citation analysis on this pool of articles provides an understanding of the clusters of knowledge that constitute this research area. To further direct our discussions, we develop and validate an AI taxonomy which we use as a scale to conduct our bibliometric and co-citation analyses. The proposed taxonomy consists of three research categories of (a) sensing and interacting, (b) learning, and (c) decision making. These categories collectively establish the basis for present and future research on the application of AI methods in SCM literature and practice. Our analysis of the primary research clusters finds that learning methods are slowly getting momentum and sensing and interacting methods offer an emerging area of research. Finally, we provide a roadmap into future studies on AI applications in SCM. Our analysis underpins the importance of behavioral considerations in future studies.

Suggested Citation

  • Pournader, Mehrdokht & Ghaderi, Hadi & Hassanzadegan, Amir & Fahimnia, Behnam, 2021. "Artificial intelligence applications in supply chain management," International Journal of Production Economics, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:proeco:v:241:y:2021:i:c:s0925527321002267
    DOI: 10.1016/j.ijpe.2021.108250
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527321002267
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2021.108250?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ivanov, Dmitry & Sokolov, Boris, 2013. "Control and system-theoretic identification of the supply chain dynamics domain for planning, analysis and adaptation of performance under uncertainty," European Journal of Operational Research, Elsevier, vol. 224(2), pages 313-323.
    2. Hardesty, David M. & Bearden, William O., 2004. "The use of expert judges in scale development: Implications for improving face validity of measures of unobservable constructs," Journal of Business Research, Elsevier, vol. 57(2), pages 98-107, February.
    3. Malmborg, Charles J., 1996. "A genetic algorithm for service level based vehicle scheduling," European Journal of Operational Research, Elsevier, vol. 93(1), pages 121-134, August.
    4. Yan Shang & David Dunson & Jing-Sheng Song, 2017. "Exploiting Big Data in Logistics Risk Assessment via Bayesian Nonparametrics," Operations Research, INFORMS, vol. 65(6), pages 1574-1588, December.
    5. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    6. Baskaran, Venkatesan & Nachiappan, Subramanian & Rahman, Shams, 2012. "Indian textile suppliers' sustainability evaluation using the grey approach," International Journal of Production Economics, Elsevier, vol. 135(2), pages 647-658.
    7. Kusi-Sarpong, Simonov & Bai, Chunguang & Sarkis, Joseph & Wang, Xuping, 2015. "Green supply chain practices evaluation in the mining industry using a joint rough sets and fuzzy TOPSIS methodology," Resources Policy, Elsevier, vol. 46(P1), pages 86-100.
    8. Kannan, Devika & Jabbour, Ana Beatriz Lopes de Sousa & Jabbour, Charbel José Chiappetta, 2014. "Selecting green suppliers based on GSCM practices: Using fuzzy TOPSIS applied to a Brazilian electronics company," European Journal of Operational Research, Elsevier, vol. 233(2), pages 432-447.
    9. Perera, H. Niles & Hurley, Jason & Fahimnia, Behnam & Reisi, Mohsen, 2019. "The human factor in supply chain forecasting: A systematic review," European Journal of Operational Research, Elsevier, vol. 274(2), pages 574-600.
    10. Xu, Xinhan & Chen, Xiangfeng & Jia, Fu & Brown, Steve & Gong, Yu & Xu, Yifan, 2018. "Supply chain finance: A systematic literature review and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 204(C), pages 160-173.
    11. Byrne, P.J. & Heavey, Cathal, 2006. "The impact of information sharing and forecasting in capacitated industrial supply chains: A case study," International Journal of Production Economics, Elsevier, vol. 103(1), pages 420-437, September.
    12. Dou, Yijie & Zhu, Qinghua & Sarkis, Joseph, 2014. "Evaluating green supplier development programs with a grey-analytical network process-based methodology," European Journal of Operational Research, Elsevier, vol. 233(2), pages 420-431.
    13. Erjia Yan & Ying Ding, 2012. "Scholarly network similarities: How bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks relate to each other," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(7), pages 1313-1326, July.
    14. Erjia Yan & Ying Ding, 2012. "Scholarly network similarities: How bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks relate to each other," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(7), pages 1313-1326, July.
    15. Kenneth Gilbert, 2005. "An ARIMA Supply Chain Model," Management Science, INFORMS, vol. 51(2), pages 305-310, February.
    16. Min, Hokey & Jeung Ko, Hyun & Seong Ko, Chang, 2006. "A genetic algorithm approach to developing the multi-echelon reverse logistics network for product returns," Omega, Elsevier, vol. 34(1), pages 56-69, January.
    17. Kraus, Mathias & Feuerriegel, Stefan & Oztekin, Asil, 2020. "Deep learning in business analytics and operations research: Models, applications and managerial implications," European Journal of Operational Research, Elsevier, vol. 281(3), pages 628-641.
    18. Toorajipour, Reza & Sohrabpour, Vahid & Nazarpour, Ali & Oghazi, Pejvak & Fischl, Maria, 2021. "Artificial intelligence in supply chain management: A systematic literature review," Journal of Business Research, Elsevier, vol. 122(C), pages 502-517.
    19. Henry Small, 1973. "Co‐citation in the scientific literature: A new measure of the relationship between two documents," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 24(4), pages 265-269, July.
    20. Arvan, Meysam & Fahimnia, Behnam & Reisi, Mohsen & Siemsen, Enno, 2019. "Integrating human judgement into quantitative forecasting methods: A review," Omega, Elsevier, vol. 86(C), pages 237-252.
    21. Luna, Ivette & Ballini, Rosangela, 2011. "Top-down strategies based on adaptive fuzzy rule-based systems for daily time series forecasting," International Journal of Forecasting, Elsevier, vol. 27(3), pages 708-724, July.
    22. Wu, Desheng & Olson, David L., 2008. "Supply chain risk, simulation, and vendor selection," International Journal of Production Economics, Elsevier, vol. 114(2), pages 646-655, August.
    23. Carbonneau, Real & Laframboise, Kevin & Vahidov, Rustam, 2008. "Application of machine learning techniques for supply chain demand forecasting," European Journal of Operational Research, Elsevier, vol. 184(3), pages 1140-1154, February.
    24. Kevin W. Boyack & Richard Klavans, 2010. "Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
    25. H. S. Wang & C. H. Tu & K. H. Chen, 2015. "Supplier Selection and Production Planning by Using Guided Genetic Algorithm and Dynamic Nondominated Sorting Genetic Algorithm II Approaches," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-15, August.
    26. Jonathan J.J.M. Seddon & Wendy L. Currie, 2017. "A model for unpacking big data analytics in high-frequency trading," Post-Print hal-01404316, HAL.
    27. Mihalis Giannakis & Michalis Louis, 2016. "A Multi-Agent Based System with Big Data Processing for Enhanced Supply Chain Agility," Post-Print hal-01353916, HAL.
    28. Garvey, Myles D. & Carnovale, Steven & Yeniyurt, Sengun, 2015. "An analytical framework for supply network risk propagation: A Bayesian network approach," European Journal of Operational Research, Elsevier, vol. 243(2), pages 618-627.
    29. Singh, Akshit & Shukla, Nagesh & Mishra, Nishikant, 2018. "Social media data analytics to improve supply chain management in food industries," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 398-415.
    30. Gunasekaran, Angappa & Papadopoulos, Thanos & Dubey, Rameshwar & Wamba, Samuel Fosso & Childe, Stephen J. & Hazen, Benjamin & Akter, Shahriar, 2017. "Big data and predictive analytics for supply chain and organizational performance," Journal of Business Research, Elsevier, vol. 70(C), pages 308-317.
    31. Freeman, R. Edward, 1994. "The Politics of Stakeholder Theory: Some Future Directions1," Business Ethics Quarterly, Cambridge University Press, vol. 4(4), pages 409-421, October.
    32. Atanu Sengupta & Sanjoy De, 2020. "Review of Literature," India Studies in Business and Economics, in: Assessing Performance of Banks in India Fifty Years After Nationalization, chapter 0, pages 15-30, Springer.
    33. Crespo Marquez, Adolfo & Blanchar, Carol, 2004. "The procurement of strategic parts. Analysis of a portfolio of contracts with suppliers using a system dynamics simulation model," International Journal of Production Economics, Elsevier, vol. 88(1), pages 29-49, March.
    34. Bradlow, Eric T. & Gangwar, Manish & Kopalle, Praveen & Voleti, Sudhir, 2017. "The Role of Big Data and Predictive Analytics in Retailing," Journal of Retailing, Elsevier, vol. 93(1), pages 79-95.
    35. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    36. S. Vijayakumar Bharathi, 2017. "Prioritizing and Ranking the Big Data Information Security Risk Spectrum," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 18(3), pages 183-201, September.
    37. Tsan‐Ming Choi & Stein W. Wallace & Yulan Wang, 2018. "Big Data Analytics in Operations Management," Production and Operations Management, Production and Operations Management Society, vol. 27(10), pages 1868-1883, October.
    38. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    39. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    40. Fildes, Robert & Goodwin, Paul & Lawrence, Michael & Nikolopoulos, Konstantinos, 2009. "Effective forecasting and judgmental adjustments: an empirical evaluation and strategies for improvement in supply-chain planning," International Journal of Forecasting, Elsevier, vol. 25(1), pages 3-23.
    41. Golmohammadi, Davood & Mellat-Parast, Mahour, 2012. "Developing a grey-based decision-making model for supplier selection," International Journal of Production Economics, Elsevier, vol. 137(2), pages 191-200.
    42. Venkatesh Mani & Catarina Delgado & Benjamin T. Hazen & Purvishkumar Patel, 2017. "Mitigating Supply Chain Risk via Sustainability Using Big Data Analytics: Evidence from the Manufacturing Supply Chain," Sustainability, MDPI, vol. 9(4), pages 1-21, April.
    43. George Baryannis & Sahar Validi & Samir Dani & Grigoris Antoniou, 2019. "Supply chain risk management and artificial intelligence: state of the art and future research directions," International Journal of Production Research, Taylor & Francis Journals, vol. 57(7), pages 2179-2202, April.
    44. Pascal Wichmann & Alexandra Brintrup & Simon Baker & Philip Woodall & Duncan McFarlane, 2020. "Extracting supply chain maps from news articles using deep neural networks," International Journal of Production Research, Taylor & Francis Journals, vol. 58(17), pages 5320-5336, September.
    45. Velibor V. Mišić & Georgia Perakis, 2020. "Data Analytics in Operations Management: A Review," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 158-169, January.
    46. FuTao Zhao & Zhong Yao & Jing Luan & Xin Song, 2016. "A Novel Fused Optimization Algorithm of Genetic Algorithm and Ant Colony Optimization," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-10, August.
    47. Christoph H. Loch, 2017. "Creativity and Risk Taking Aren't Rational: Behavioral Operations in MOT," Production and Operations Management, Production and Operations Management Society, vol. 26(4), pages 591-604, April.
    48. Xianghui Ning & Fugee Tsung, 2013. "Improved design of kernel distance–based charts using support vector methods," IISE Transactions, Taylor & Francis Journals, vol. 45(4), pages 464-476.
    49. Seddon, Jonathan J.J.M. & Currie, Wendy L., 2017. "A model for unpacking big data analytics in high-frequency trading," Journal of Business Research, Elsevier, vol. 70(C), pages 300-307.
    50. Tako, Antuela A. & Robinson, Stewart, 2010. "Model development in discrete-event simulation and system dynamics: An empirical study of expert modellers," European Journal of Operational Research, Elsevier, vol. 207(2), pages 784-794, December.
    51. Mojtaba Khorram Niaki & Fabio Nonino, 2017. "Additive manufacturing management: a review and future research agenda," International Journal of Production Research, Taylor & Francis Journals, vol. 55(5), pages 1419-1439, March.
    52. Chen, Chen-Tung & Lin, Ching-Torng & Huang, Sue-Fn, 2006. "A fuzzy approach for supplier evaluation and selection in supply chain management," International Journal of Production Economics, Elsevier, vol. 102(2), pages 289-301, August.
    53. Gnoni, M. G. & Iavagnilio, R. & Mossa, G. & Mummolo, G. & Di Leva, A., 2003. "Production planning of a multi-site manufacturing system by hybrid modelling: A case study from the automotive industry," International Journal of Production Economics, Elsevier, vol. 85(2), pages 251-262, August.
    54. Nickel, Stefan & Saldanha-da-Gama, Francisco & Ziegler, Hans-Peter, 2012. "A multi-stage stochastic supply network design problem with financial decisions and risk management," Omega, Elsevier, vol. 40(5), pages 511-524.
    55. Alexandre Dolgui & Dmitry Ivanov & Suresh P. Sethi & Boris Sokolov, 2019. "Scheduling in production, supply chain and Industry 4.0 systems by optimal control: fundamentals, state-of-the-art and applications," International Journal of Production Research, Taylor & Francis Journals, vol. 57(2), pages 411-432, January.
    56. Ritesh Ojha & Abhijeet Ghadge & Manoj Kumar Tiwari & Umit S. Bititci, 2018. "Bayesian network modelling for supply chain risk propagation," International Journal of Production Research, Taylor & Francis Journals, vol. 56(17), pages 5795-5819, September.
    57. Tan, Kim Hua & Zhan, YuanZhu & Ji, Guojun & Ye, Fei & Chang, Chingter, 2015. "Harvesting big data to enhance supply chain innovation capabilities: An analytic infrastructure based on deduction graph," International Journal of Production Economics, Elsevier, vol. 165(C), pages 223-233.
    58. Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov, 2019. "The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics," International Journal of Production Research, Taylor & Francis Journals, vol. 57(3), pages 829-846, February.
    59. Kusiak, Andrew & Chen, Mingyuan, 1988. "Expert systems for planning and scheduling manufacturing systems," European Journal of Operational Research, Elsevier, vol. 34(2), pages 113-130, March.
    60. Turowski, Klaus, 2002. "Agent-based e-commerce in case of mass customization," International Journal of Production Economics, Elsevier, vol. 75(1-2), pages 69-81, January.
    61. Ruomeng Cui & Santiago Gallino & Antonio Moreno & Dennis J. Zhang, 2018. "The Operational Value of Social Media Information," Production and Operations Management, Production and Operations Management Society, vol. 27(10), pages 1749-1769, October.
    62. Kevin W. Boyack & Richard Klavans, 2010. "Co‐citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
    63. Akter, Shahriar & Wamba, Samuel Fosso & Gunasekaran, Angappa & Dubey, Rameshwar & Childe, Stephen J., 2016. "How to improve firm performance using big data analytics capability and business strategy alignment?," International Journal of Production Economics, Elsevier, vol. 182(C), pages 113-131.
    64. Shah, Naimatullah & Irani, Zahir & Sharif, Amir M., 2017. "Big data in an HR context: Exploring organizational change readiness, employee attitudes and behaviors," Journal of Business Research, Elsevier, vol. 70(C), pages 366-378.
    65. Navin K. Dev & Ravi Shankar & Angappa Gunasekaran & Lakshman S. Thakur, 2016. "A hybrid adaptive decision system for supply chain reconfiguration," International Journal of Production Research, Taylor & Francis Journals, vol. 54(23), pages 7100-7114, December.
    66. Mehrdokht Pournader & Yangyan Shi & Stefan Seuring & S.C. Lenny Koh, 2020. "Blockchain applications in supply chains, transport and logistics: a systematic review of the literature," International Journal of Production Research, Taylor & Francis Journals, vol. 58(7), pages 2063-2081, April.
    67. Chen, Serena H. & Jakeman, Anthony J. & Norton, John P., 2008. "Artificial Intelligence techniques: An introduction to their use for modelling environmental systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(2), pages 379-400.
    68. Liv Langfeldt, 2004. "Expert panels evaluating research: decision-making and sources of bias," Research Evaluation, Oxford University Press, vol. 13(1), pages 51-62, April.
    69. Bortfeldt, Andreas & Gehring, Hermann, 2001. "A hybrid genetic algorithm for the container loading problem," European Journal of Operational Research, Elsevier, vol. 131(1), pages 143-161, May.
    70. Jun Tian & Kanliang Wang & Yan Chen & Björn Johansson, 2010. "From IT deployment capabilities to competitive advantage: An exploratory study in China," Information Systems Frontiers, Springer, vol. 12(3), pages 239-255, July.
    71. Hosseini, Seyedmohsen & Barker, Kash, 2016. "A Bayesian network model for resilience-based supplier selection," International Journal of Production Economics, Elsevier, vol. 180(C), pages 68-87.
    72. Abedinnia, Hamid & Glock, C. H. & Schneider, M. & Grosse, E. H., 2017. "Machine scheduling problems in production: A tertiary study," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 88118, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    73. Wu, Lei-Yu, 2010. "Applicability of the resource-based and dynamic-capability views under environmental volatility," Journal of Business Research, Elsevier, vol. 63(1), pages 27-31, January.
    74. Yu, Chian-Son & Li, Han-Lin, 2000. "A robust optimization model for stochastic logistic problems," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 385-397, March.
    75. Hyndman, Rob J. & Lee, Alan J. & Wang, Earo, 2016. "Fast computation of reconciled forecasts for hierarchical and grouped time series," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 16-32.
    76. Hazen, Benjamin T. & Boone, Christopher A. & Ezell, Jeremy D. & Jones-Farmer, L. Allison, 2014. "Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications," International Journal of Production Economics, Elsevier, vol. 154(C), pages 72-80.
    77. Saghaei, Mahsa & Ghaderi, Hadi & Soleimani, Hamed, 2020. "Design and optimization of biomass electricity supply chain with uncertainty in material quality, availability and market demand," Energy, Elsevier, vol. 197(C).
    78. Reiner, Gerald, 2005. "Customer-oriented improvement and evaluation of supply chain processes supported by simulation models," International Journal of Production Economics, Elsevier, vol. 96(3), pages 381-395, June.
    79. Paolo Priore & Borja Ponte & Rafael Rosillo & David de la Fuente, 2019. "Applying machine learning to the dynamic selection of replenishment policies in fast-changing supply chain environments," International Journal of Production Research, Taylor & Francis Journals, vol. 57(11), pages 3663-3677, June.
    80. Zhang, Yi & Zhang, Guangquan & Chen, Hongshu & Porter, Alan L. & Zhu, Donghua & Lu, Jie, 2016. "Topic analysis and forecasting for science, technology and innovation: Methodology with a case study focusing on big data research," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 179-191.
    81. Thomas C. Powell & Anne Dent‐Micallef, 1997. "Information technology as competitive advantage: the role of human, business, and technology resources," Strategic Management Journal, Wiley Blackwell, vol. 18(5), pages 375-405, May.
    82. Dutta, Debprotim & Bose, Indranil, 2015. "Managing a Big Data project: The case of Ramco Cements Limited," International Journal of Production Economics, Elsevier, vol. 165(C), pages 293-306.
    83. Kai Huang & Shabbir Ahmed, 2009. "The Value of Multistage Stochastic Programming in Capacity Planning Under Uncertainty," Operations Research, INFORMS, vol. 57(4), pages 893-904, August.
    84. Wamba, Samuel Fosso & Gunasekaran, Angappa & Akter, Shahriar & Ren, Steven Ji-fan & Dubey, Rameshwar & Childe, Stephen J., 2017. "Big data analytics and firm performance: Effects of dynamic capabilities," Journal of Business Research, Elsevier, vol. 70(C), pages 356-365.
    85. Leung, Stephen C.H. & Tsang, Sally O.S. & Ng, W.L. & Wu, Yue, 2007. "A robust optimization model for multi-site production planning problem in an uncertain environment," European Journal of Operational Research, Elsevier, vol. 181(1), pages 224-238, August.
    86. Sodhi, ManMohan S. & Tang, Christopher S., 2009. "Modeling supply-chain planning under demand uncertainty using stochastic programming: A survey motivated by asset-liability management," International Journal of Production Economics, Elsevier, vol. 121(2), pages 728-738, October.
    87. Babai, Zied & Boylan, John E. & Kolassa, Stephan & Nikolopoulos, Konstantinos, 2016. "Supply chain forecasting: Theory, practice, their gap and the futureAuthor-Name: Syntetos, Aris A," European Journal of Operational Research, Elsevier, vol. 252(1), pages 1-26.
    88. ShiJie Ye & Zhi Xiao & Guangfu Zhu, 2015. "Identification of supply chain disruptions with economic performance of firms using multi-category support vector machines," International Journal of Production Research, Taylor & Francis Journals, vol. 53(10), pages 3086-3103, May.
    89. Steven Ji-fan Ren & Samuel Fosso Wamba & Shahriar Akter & Rameshwar Dubey & Stephen J. Childe, 2017. "Modelling quality dynamics, business value and firm performance in a big data analytics environment," International Journal of Production Research, Taylor & Francis Journals, vol. 55(17), pages 5011-5026, September.
    90. Kamble, Sachin S. & Gunasekaran, Angappa & Gawankar, Shradha A., 2020. "Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications," International Journal of Production Economics, Elsevier, vol. 219(C), pages 179-194.
    91. Fahimnia, Behnam & Sarkis, Joseph & Davarzani, Hoda, 2015. "Green supply chain management: A review and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 162(C), pages 101-114.
    92. Bai, Chunguang & Sarkis, Joseph, 2010. "Integrating sustainability into supplier selection with grey system and rough set methodologies," International Journal of Production Economics, Elsevier, vol. 124(1), pages 252-264, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shengxing Yang, 2022. "A systematic literature review on the disruptions of artificial intelligence within the business world: in terms of the evolution of competences [Une revue systématique de la littérature sur les bo," Post-Print hal-03694170, HAL.
    2. Kongmanas Yavaprabhas & Mehrdokht Pournader & Stefan Seuring, 2023. "Blockchain as the “trust-building machine” for supply chain management," Annals of Operations Research, Springer, vol. 327(1), pages 49-88, August.
    3. Bodendorf, Frank & Xie, Qiao & Merkl, Philipp & Franke, Jörg, 2022. "A multi-perspective approach to support collaborative cost management in supplier-buyer dyads," International Journal of Production Economics, Elsevier, vol. 245(C).
    4. Monika Roman, 2022. "Sustainable Transport: A State-of-the-Art Literature Review," Energies, MDPI, vol. 15(23), pages 1-14, November.
    5. Lixi Zhou & Tijun Fan & Jie Yang & Lihao Zhang, 2022. "Monopolistic vs. Competitive Supply Chain Concerning Selection of the Platform Selling Mode in Three Power Structures," Sustainability, MDPI, vol. 14(17), pages 1-27, September.
    6. Pervaiz Akhtar & Arsalan Mujahid Ghouri & Haseeb Ur Rehman Khan & Mirza Amin ul Haq & Usama Awan & Nadia Zahoor & Zaheer Khan & Aniqa Ashraf, 2023. "Detecting fake news and disinformation using artificial intelligence and machine learning to avoid supply chain disruptions," Annals of Operations Research, Springer, vol. 327(2), pages 633-657, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dubey, Rameshwar & Gunasekaran, Angappa & Childe, Stephen J. & Bryde, David J. & Giannakis, Mihalis & Foropon, Cyril & Roubaud, David & Hazen, Benjamin T., 2020. "Big data analytics and artificial intelligence pathway to operational performance under the effects of entrepreneurial orientation and environmental dynamism: A study of manufacturing organisations," International Journal of Production Economics, Elsevier, vol. 226(C).
    2. Purva Grover & Arpan Kumar Kar, 2017. "Big Data Analytics: A Review on Theoretical Contributions and Tools Used in Literature," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 18(3), pages 203-229, September.
    3. Sheng, Jie & Amankwah-Amoah, Joseph & Wang, Xiaojun, 2017. "A multidisciplinary perspective of big data in management research," International Journal of Production Economics, Elsevier, vol. 191(C), pages 97-112.
    4. Claudio Vitari & Elisabetta Raguseo, 2019. "Big data analytics business value and firm performance: Linking with environmental context," Post-Print hal-02293765, HAL.
    5. Roßmann, Bernhard & Canzaniello, Angelo & von der Gracht, Heiko & Hartmann, Evi, 2018. "The future and social impact of Big Data Analytics in Supply Chain Management: Results from a Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 135-149.
    6. Brinch, Morten & Gunasekaran, Angappa & Fosso Wamba, Samuel, 2021. "Firm-level capabilities towards big data value creation," Journal of Business Research, Elsevier, vol. 131(C), pages 539-548.
    7. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    8. Vaibhav S. Narwane & Rakesh D. Raut & Sachin Kumar Mangla & Manoj Dora & Balkrishna E. Narkhede, 2023. "Risks to Big Data Analytics and Blockchain Technology Adoption in Supply Chains," Annals of Operations Research, Springer, vol. 327(1), pages 339-374, August.
    9. Raut, Rakesh D. & Mangla, Sachin Kumar & Narwane, Vaibhav S. & Dora, Manoj & Liu, Mengqi, 2021. "Big Data Analytics as a mediator in Lean, Agile, Resilient, and Green (LARG) practices effects on sustainable supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    10. Acciarini, Chiara & Cappa, Francesco & Boccardelli, Paolo & Oriani, Raffaele, 2023. "How can organizations leverage big data to innovate their business models? A systematic literature review," Technovation, Elsevier, vol. 123(C).
    11. Dmitry Ivanov, 2022. "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1411-1431, December.
    12. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
    13. Xiongyong Zhou & Zhiduan Xu, 2018. "An Integrated Sustainable Supplier Selection Approach Based on Hybrid Information Aggregation," Sustainability, MDPI, vol. 10(7), pages 1-49, July.
    14. Babai, Zied & Boylan, John E. & Kolassa, Stephan & Nikolopoulos, Konstantinos, 2016. "Supply chain forecasting: Theory, practice, their gap and the futureAuthor-Name: Syntetos, Aris A," European Journal of Operational Research, Elsevier, vol. 252(1), pages 1-26.
    15. Hosseini, Seyedmohsen & Ivanov, Dmitry & Dolgui, Alexandre, 2019. "Review of quantitative methods for supply chain resilience analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 285-307.
    16. Arunachalam, Deepak & Kumar, Niraj & Kawalek, John Paul, 2018. "Understanding big data analytics capabilities in supply chain management: Unravelling the issues, challenges and implications for practice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 416-436.
    17. Pinçe, Çerağ & Turrini, Laura & Meissner, Joern, 2021. "Intermittent demand forecasting for spare parts: A Critical review," Omega, Elsevier, vol. 105(C).
    18. Wamba, Samuel Fosso & Dubey, Rameshwar & Gunasekaran, Angappa & Akter, Shahriar, 2020. "The performance effects of big data analytics and supply chain ambidexterity: The moderating effect of environmental dynamism," International Journal of Production Economics, Elsevier, vol. 222(C).
    19. Guan-Can Yang & Gang Li & Chun-Ya Li & Yun-Hua Zhao & Jing Zhang & Tong Liu & Dar-Zen Chen & Mu-Hsuan Huang, 2015. "Using the comprehensive patent citation network (CPC) to evaluate patent value," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1319-1346, December.
    20. de Camargo Fiorini, Paula & Roman Pais Seles, Bruno Michel & Chiappetta Jabbour, Charbel Jose & Barberio Mariano, Enzo & de Sousa Jabbour, Ana Beatriz Lopes, 2018. "Management theory and big data literature: From a review to a research agenda," International Journal of Information Management, Elsevier, vol. 43(C), pages 112-129.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:241:y:2021:i:c:s0925527321002267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.