IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v181y2007i1p224-238.html
   My bibliography  Save this article

A robust optimization model for multi-site production planning problem in an uncertain environment

Author

Listed:
  • Leung, Stephen C.H.
  • Tsang, Sally O.S.
  • Ng, W.L.
  • Wu, Yue

Abstract

No abstract is available for this item.

Suggested Citation

  • Leung, Stephen C.H. & Tsang, Sally O.S. & Ng, W.L. & Wu, Yue, 2007. "A robust optimization model for multi-site production planning problem in an uncertain environment," European Journal of Operational Research, Elsevier, vol. 181(1), pages 224-238, August.
  • Handle: RePEc:eee:ejores:v:181:y:2007:i:1:p:224-238
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(06)00426-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mazzola, Joseph B. & Neebe, Alan W. & Rump, Christopher M., 1998. "Multiproduct production planning in the presence of work-force learning," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 336-356, April.
    2. Nam, Sang-jin & Logendran, Rasaratnam, 1992. "Aggregate production planning -- A survey of models and methodologies," European Journal of Operational Research, Elsevier, vol. 61(3), pages 255-272, September.
    3. Wang, Reay-Chen & Fang, Hsiao-Hua, 2001. "Aggregate production planning with multiple objectives in a fuzzy environment," European Journal of Operational Research, Elsevier, vol. 133(3), pages 521-536, September.
    4. Guinet, Alain, 2001. "Multi-site planning: A transshipment problem," International Journal of Production Economics, Elsevier, vol. 74(1-3), pages 21-32, December.
    5. John M. Mulvey & Andrzej Ruszczyński, 1995. "A New Scenario Decomposition Method for Large-Scale Stochastic Optimization," Operations Research, INFORMS, vol. 43(3), pages 477-490, June.
    6. Kjetil Høyland & Stein W. Wallace, 2001. "Generating Scenario Trees for Multistage Decision Problems," Management Science, INFORMS, vol. 47(2), pages 295-307, February.
    7. Raymond K.-M. Cheung & Warren B. Powell, 1996. "Models and Algorithms for Distribution Problems with Uncertain Demands," Transportation Science, INFORMS, vol. 30(1), pages 43-59, February.
    8. Yu, Chian-Son & Li, Han-Lin, 2000. "A robust optimization model for stochastic logistic problems," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 385-397, March.
    9. Jitka Dupačová & Giorgio Consigli & Stein Wallace, 2000. "Scenarios for Multistage Stochastic Programs," Annals of Operations Research, Springer, vol. 100(1), pages 25-53, December.
    10. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    11. Dawei Bai & Tamra Carpenter & John Mulvey, 1997. "Making a Case for Robust Optimization Models," Management Science, INFORMS, vol. 43(7), pages 895-907, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S C H Leung & K K Lai & W-L Ng & Y Wu, 2007. "A robust optimization model for production planning of perishable products," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(4), pages 413-422, April.
    2. Mirzapour Al-e-hashem, S.M.J. & Malekly, H. & Aryanezhad, M.B., 2011. "A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty," International Journal of Production Economics, Elsevier, vol. 134(1), pages 28-42, November.
    3. Yan, Shangyao & Tang, Ching-Hui, 2009. "Inter-city bus scheduling under variable market share and uncertain market demands," Omega, Elsevier, vol. 37(1), pages 178-192, February.
    4. Yan, Shangyao & Tang, Ching-Hui, 2007. "A heuristic approach for airport gate assignments for stochastic flight delays," European Journal of Operational Research, Elsevier, vol. 180(2), pages 547-567, July.
    5. S C H Leung & Y Wu & K K Lai, 2006. "A stochastic programming approach for multi-site aggregate production planning," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(2), pages 123-132, February.
    6. Shangyao Yan & Ching-Hui Tang, 2008. "An Integrated Framework for Intercity Bus Scheduling Under Stochastic Bus Travel Times," Transportation Science, INFORMS, vol. 42(3), pages 318-335, August.
    7. Xu, Y. & Huang, G.H. & Qin, X.S. & Cao, M.F., 2009. "SRCCP: A stochastic robust chance-constrained programming model for municipal solid waste management under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 352-363.
    8. Ratanakuakangwan, Sudlop & Morita, Hiroshi, 2021. "Hybrid stochastic robust optimization and robust optimization for energy planning – A social impact-constrained case study," Applied Energy, Elsevier, vol. 298(C).
    9. Jabbarzadeh, Armin & Fahimnia, Behnam & Seuring, Stefan, 2014. "Dynamic supply chain network design for the supply of blood in disasters: A robust model with real world application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 225-244.
    10. Mohammaddust, Faeghe & Rezapour, Shabnam & Farahani, Reza Zanjirani & Mofidfar, Mohammad & Hill, Alex, 2017. "Developing lean and responsive supply chains: A robust model for alternative risk mitigation strategies in supply chain designs," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 632-653.
    11. Alizadeh, Morteza & Amiri-Aref, Mehdi & Mustafee, Navonil & Matilal, Sumohon, 2019. "A robust stochastic Casualty Collection Points location problem," European Journal of Operational Research, Elsevier, vol. 279(3), pages 965-983.
    12. Zhao, Yonggan & Ziemba, William T., 2008. "Calculating risk neutral probabilities and optimal portfolio policies in a dynamic investment model with downside risk control," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1525-1540, March.
    13. Hashem Omrani & Farzane Adabi & Narges Adabi, 2017. "Designing an efficient supply chain network with uncertain data: a robust optimization—data envelopment analysis approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(7), pages 816-828, July.
    14. João Flávio de Freitas Almeida & Samuel Vieira Conceição & Luiz Ricardo Pinto & Ricardo Saraiva de Camargo & Gilberto de Miranda Júnior, 2018. "Flexibility evaluation of multiechelon supply chains," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-27, March.
    15. Donya Rahmani & Arash Zandi & Sara Behdad & Arezou Entezaminia, 2021. "A light robust model for aggregate production planning with consideration of environmental impacts of machines," Operational Research, Springer, vol. 21(1), pages 273-297, March.
    16. Chen, Andrew N.K., 2006. "Robust optimization for performance tuning of modern database systems," European Journal of Operational Research, Elsevier, vol. 171(2), pages 412-429, June.
    17. Pereira, Daniel Filipe & Oliveira, José Fernando & Carravilla, Maria Antónia, 2023. "Design of a sales plan in a hybrid contractual and non-contractual context in a setting of limited capacity: A robust approach," International Journal of Production Economics, Elsevier, vol. 260(C).
    18. Mirzapour Al-e-hashem, S.M.J. & Baboli, A. & Sazvar, Z., 2013. "A stochastic aggregate production planning model in a green supply chain: Considering flexible lead times, nonlinear purchase and shortage cost functions," European Journal of Operational Research, Elsevier, vol. 230(1), pages 26-41.
    19. Lassiter, Kyle & Khademi, Amin & Taaffe, Kevin M., 2015. "A robust optimization approach to volunteer management in humanitarian crises," International Journal of Production Economics, Elsevier, vol. 163(C), pages 97-111.
    20. Demirel, Edil & Özelkan, Ertunga C. & Lim, Churlzu, 2018. "Aggregate planning with Flexibility Requirements Profile," International Journal of Production Economics, Elsevier, vol. 202(C), pages 45-58.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:181:y:2007:i:1:p:224-238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.