IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v43y1995i3p477-490.html
   My bibliography  Save this article

A New Scenario Decomposition Method for Large-Scale Stochastic Optimization

Author

Listed:
  • John M. Mulvey

    (Princeton University, Princeton, New Jersey)

  • Andrzej Ruszczyński

    (International Institute for Applied Systems Analysis, Laxenburg, Austria)

Abstract

A novel parallel decomposition algorithm is developed for large, multistage stochastic optimization problems. The method decomposes the problem into subproblems that correspond to scenarios. The subproblems are modified by separable quadratic terms to coordinate the scenario solutions. Convergence of the coordination procedure is proven for linear programs. Subproblems are solved using a nonlinear interior point algorithm. The approach adjusts the degree of decomposition to fit the available hardware environment. Initial testing on a distributed network of workstations shows that an optimal number of computers depends upon the work per subproblem and its relation to the communication capacities. The algorithm has promise for solving stochastic programs that lie outside current capabilities.

Suggested Citation

  • John M. Mulvey & Andrzej Ruszczyński, 1995. "A New Scenario Decomposition Method for Large-Scale Stochastic Optimization," Operations Research, INFORMS, vol. 43(3), pages 477-490, June.
  • Handle: RePEc:inm:oropre:v:43:y:1995:i:3:p:477-490
    DOI: 10.1287/opre.43.3.477
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.43.3.477
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.43.3.477?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:43:y:1995:i:3:p:477-490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.