IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v34y2006i1p56-69.html
   My bibliography  Save this article

A genetic algorithm approach to developing the multi-echelon reverse logistics network for product returns

Author

Listed:
  • Min, Hokey
  • Jeung Ko, Hyun
  • Seong Ko, Chang

Abstract

Traditionally, product returns have been viewed as an unavoidable cost of doing business, forfeiting any chance of cost savings. As cost pressures continue to mount in this era of economic downturns, a growing number of firms have begun to explore the possibility of managing product returns in a more cost-efficient manner. However, few studies have addressed the problem of determining the number and location of centralized return centers (i.e., reverse consolidation points) where returned products from retailers or end-customers were collected, sorted, and consolidated into a large shipment destined for manufacturers' or distributors' repair facilities. To fill the void in such a line of research, this paper proposes a nonlinear mixed-integer programming model and a genetic algorithm that can solve the reverse logistics problem involving product returns. The usefulness of the proposed model and algorithm was validated by its application to an illustrative example dealing with products returned from online sales.

Suggested Citation

  • Min, Hokey & Jeung Ko, Hyun & Seong Ko, Chang, 2006. "A genetic algorithm approach to developing the multi-echelon reverse logistics network for product returns," Omega, Elsevier, vol. 34(1), pages 56-69, January.
  • Handle: RePEc:eee:jomega:v:34:y:2006:i:1:p:56-69
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(04)00115-X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barros, A. I. & Dekker, R. & Scholten, V., 1998. "A two-level network for recycling sand: A case study," European Journal of Operational Research, Elsevier, vol. 110(2), pages 199-214, October.
    2. Fleischmann, Mortiz & Krikke, Hans Ronald & Dekker, Rommert & Flapper, Simme Douwe P., 2000. "A characterisation of logistics networks for product recovery," Omega, Elsevier, vol. 28(6), pages 653-666, December.
    3. Zhou, Gengui & Min, Hokey & Gen, Mitsuo, 2003. "A genetic algorithm approach to the bi-criteria allocation of customers to warehouses," International Journal of Production Economics, Elsevier, vol. 86(1), pages 35-45, October.
    4. Min, H, 1989. "A bicriterion reverse distribution model for product recall," Omega, Elsevier, vol. 17(5), pages 483-490.
    5. Caruso, C. & Colorni, A. & Paruccini, M., 1993. "The regional urban solid waste management system: A modelling approach," European Journal of Operational Research, Elsevier, vol. 70(1), pages 16-30, October.
    6. Jayaraman, Vaidyanathan & Patterson, Raymond A. & Rolland, Erik, 2003. "The design of reverse distribution networks: Models and solution procedures," European Journal of Operational Research, Elsevier, vol. 150(1), pages 128-149, October.
    7. Zhou, Gengui & Gen, Mitsuo, 1999. "Genetic algorithm approach on multi-criteria minimum spanning tree problem," European Journal of Operational Research, Elsevier, vol. 114(1), pages 141-152, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min, Hokey & Ko, Hyun-Jeung, 2008. "The dynamic design of a reverse logistics network from the perspective of third-party logistics service providers," International Journal of Production Economics, Elsevier, vol. 113(1), pages 176-192, May.
    2. Jayaraman, Vaidyanathan & Patterson, Raymond A. & Rolland, Erik, 2003. "The design of reverse distribution networks: Models and solution procedures," European Journal of Operational Research, Elsevier, vol. 150(1), pages 128-149, October.
    3. Schweiger, Katharina & Sahamie, Ramin, 2013. "A hybrid Tabu Search approach for the design of a paper recycling network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 98-119.
    4. Toso, Eli Angela V. & Alem, Douglas, 2014. "Effective location models for sorting recyclables in public management," European Journal of Operational Research, Elsevier, vol. 234(3), pages 839-860.
    5. Aksen, Deniz & Aras, Necati & Karaarslan, Ayse Gönül, 2009. "Design and analysis of government subsidized collection systems for incentive-dependent returns," International Journal of Production Economics, Elsevier, vol. 119(2), pages 308-327, June.
    6. Aras, Necati & Aksen, Deniz, 2008. "Locating collection centers for distance- and incentive-dependent returns," International Journal of Production Economics, Elsevier, vol. 111(2), pages 316-333, February.
    7. Kristin Sahyouni & R. Canan Savaskan & Mark S. Daskin, 2007. "A Facility Location Model for Bidirectional Flows," Transportation Science, INFORMS, vol. 41(4), pages 484-499, November.
    8. Rahman, Shams & Subramanian, Nachiappan, 2012. "Factors for implementing end-of-life computer recycling operations in reverse supply chains," International Journal of Production Economics, Elsevier, vol. 140(1), pages 239-248.
    9. Hong, I-Hsuan & Ammons, Jane C. & Realff, Matthew J., 2008. "Decentralized decision-making and protocol design for recycled material flows," International Journal of Production Economics, Elsevier, vol. 116(2), pages 325-337, December.
    10. Fleischmann, Moritz & Bloemhof-Ruwaard, Jacqueline M. & Dekker, Rommert & van der Laan, Erwin & van Nunen, Jo A. E. E. & Van Wassenhove, Luk N., 1997. "Quantitative models for reverse logistics: A review," European Journal of Operational Research, Elsevier, vol. 103(1), pages 1-17, November.
    11. Fatih Rahim & Canan Sepil, 2014. "A location-routing problem in glass recycling," Annals of Operations Research, Springer, vol. 223(1), pages 329-353, December.
    12. Agnieszka Konys, 2019. "Green Supplier Selection Criteria: From a Literature Review to a Comprehensive Knowledge Base," Sustainability, MDPI, Open Access Journal, vol. 11(15), pages 1-41, August.
    13. Abdelkader Sbihi & Richard Eglese, 2010. "Combinatorial optimization and Green Logistics," Annals of Operations Research, Springer, vol. 175(1), pages 159-175, March.
    14. Salema, Maria Isabel Gomes & Barbosa-Povoa, Ana Paula & Novais, Augusto Q., 2007. "An optimization model for the design of a capacitated multi-product reverse logistics network with uncertainty," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1063-1077, June.
    15. L K Chu & Y Shi & S Lin & D Sculli & J Ni, 2010. "Fuzzy chance-constrained programming model for a multi-echelon reverse logistics network for household appliances," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 551-560, April.
    16. Mohammad Fattahi & Kannan Govindan, 2017. "Integrated forward/reverse logistics network design under uncertainty with pricing for collection of used products," Annals of Operations Research, Springer, vol. 253(1), pages 193-225, June.
    17. Qin, Zhongfeng & Ji, Xiaoyu, 2010. "Logistics network design for product recovery in fuzzy environment," European Journal of Operational Research, Elsevier, vol. 202(2), pages 479-490, April.
    18. Van Engeland, Jens & Beliën, Jeroen & De Boeck, Liesje & De Jaeger, Simon, 2020. "Literature review: Strategic network optimization models in waste reverse supply chains," Omega, Elsevier, vol. 91(C).
    19. Chouinard, Marc & D'Amours, Sophie & Aït-Kadi, Daoud, 2008. "A stochastic programming approach for designing supply loops," International Journal of Production Economics, Elsevier, vol. 113(2), pages 657-677, June.
    20. de Brito, M.P. & Dekker, R., 2002. "Reverse logistics - a framework," Econometric Institute Research Papers EI 2002-38, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:34:y:2006:i:1:p:56-69. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.