IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223020868.html
   My bibliography  Save this article

How does digital economy affect energy poverty? Analysis from the global perspective

Author

Listed:
  • Wang, Ying
  • Wang, Yong
  • Shahbaz, Muhammad

Abstract

As an emerging engine of economy development, the potential impact of digital economy on energy poverty are worth to explore for alleviation. Using a balanced panel dataset of 61 countries, this study empirically examined the impact of digital economy on energy poverty and relative transmission mechanisms. Specifically, we first assess the digital economy and energy poverty level across the globe, and then explore whether the development of digital economy can help alleviate energy poverty. The heterogeneity and mediating roles in the digital economy-energy poverty nexus are also discussed. We conclude that: (1) Global energy poverty index shows a decreasing trend, and global digital economy index shows an increasing trend during the sample period. (2) There is a negative relationship between the digital economy and energy poverty, demonstrating that the development of the digital economy has a positive impact on energy poverty alleviation. In addition, the heterogeneity test results demonstrated that positive alleviation impacts exist in high-income countries, whereas middle-income countries experience negative impacts, and heterogeneities also exist in different regions. (3) The analysis of the mediation effects showed that government governance, economic growth, and urban development mediate the nexus of the digital economy on energy poverty. Based on the above findings, this study proposes several policy implications to reduce energy poverty.

Suggested Citation

  • Wang, Ying & Wang, Yong & Shahbaz, Muhammad, 2023. "How does digital economy affect energy poverty? Analysis from the global perspective," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223020868
    DOI: 10.1016/j.energy.2023.128692
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223020868
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128692?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. González-Eguino, Mikel, 2015. "Energy poverty: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 377-385.
    2. Emmanouil Tranos & Aura Reggiani & Peter Nijkamp, 2013. "Accessibility of Cities in the Digital Economy," Tinbergen Institute Discussion Papers 13-160/VIII, Tinbergen Institute.
    3. Bhide, Anjali & Monroy, Carlos Rodríguez, 2011. "Energy poverty: A special focus on energy poverty in India and renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1057-1066, February.
    4. Cai, Zhengyu & Yu, Chin-Hsien & Zhu, Chunhui, 2021. "Government-led urbanization and natural gas demand in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    5. Juan Aranda & Ignacio Zabalza & Andrea Conserva & Gema Millán, 2017. "Analysis of Energy Efficiency Measures and Retrofitting Solutions for Social Housing Buildings in Spain as a Way to Mitigate Energy Poverty," Sustainability, MDPI, vol. 9(10), pages 1-22, October.
    6. Pan, Wenrong & Xie, Tao & Wang, Zhuwang & Ma, Lisha, 2022. "Digital economy: An innovation driver for total factor productivity," Journal of Business Research, Elsevier, vol. 139(C), pages 303-311.
    7. Ye, Yuxiang & Koch, Steven F., 2021. "Measuring energy poverty in South Africa based on household required energy consumption," Energy Economics, Elsevier, vol. 103(C).
    8. Awaworyi Churchill, Sefa & Smyth, Russell & Trinh, Trong-Anh, 2022. "Energy poverty, temperature and climate change," Energy Economics, Elsevier, vol. 114(C).
    9. Shahzad, Umer & Gupta, Mansi & Sharma, Gagan Deep & Rao, Amar & Chopra, Ritika, 2022. "Resolving energy poverty for social change: Research directions and agenda," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    10. Dong, Kangyin & Dou, Yue & Jiang, Qingzhe, 2022. "Income inequality, energy poverty, and energy efficiency: Who cause who and how?," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    11. Wang, Lianghu & Shao, Jun, 2023. "Digital economy, entrepreneurship and energy efficiency," Energy, Elsevier, vol. 269(C).
    12. Mouraviev, Nikolai, 2021. "Renewable energy in Kazakhstan: Challenges to policy and governance," Energy Policy, Elsevier, vol. 149(C).
    13. Pachauri, Shonali & Spreng, Daniel, 2011. "Measuring and monitoring energy poverty," Energy Policy, Elsevier, vol. 39(12), pages 7497-7504.
    14. Zheng, Jiajia & Wang, Xingwu, 2021. "Can mobile information communication technologies (ICTs) promote the development of renewables?-evidence from seven countries," Energy Policy, Elsevier, vol. 149(C).
    15. Pereira, Marcio Giannini & Freitas, Marcos Aurélio Vasconcelos & da Silva, Neilton Fidelis, 2010. "Rural electrification and energy poverty: Empirical evidences from Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1229-1240, May.
    16. Shahbaz, Muhammad & Wang, Jianda & Dong, Kangyin & Zhao, Jun, 2022. "The impact of digital economy on energy transition across the globe: The mediating role of government governance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    17. Apergis, Nicholas & Polemis, Michael & Soursou, Simeoni-Eleni, 2022. "Energy poverty and education: Fresh evidence from a panel of developing countries," Energy Economics, Elsevier, vol. 106(C).
    18. Thomson, Harriet & Snell, Carolyn, 2013. "Quantifying the prevalence of fuel poverty across the European Union," Energy Policy, Elsevier, vol. 52(C), pages 563-572.
    19. Wang, Bo & Wang, Jianda & Dong, Kangyin & Dong, Xiucheng, 2023. "Is the digital economy conducive to the development of renewable energy in Asia?," Energy Policy, Elsevier, vol. 173(C).
    20. Wang, Wei & Xiao, Weiwei & Bai, Caiquan, 2022. "Can renewable energy technology innovation alleviate energy poverty? Perspective from the marketization level," Technology in Society, Elsevier, vol. 68(C).
    21. Umer Shahzad & Magdalena Radulescu & Syed Rahim & Cem Isik & Zahid Yousaf & Stefan Alexandru Ionescu, 2021. "Do Environment-Related Policy Instruments and Technologies Facilitate Renewable Energy Generation? Exploring the Contextual Evidence from Developed Economies," Energies, MDPI, vol. 14(3), pages 1-25, January.
    22. Sadath, Anver C. & Acharya, Rajesh H., 2017. "Assessing the extent and intensity of energy poverty using Multidimensional Energy Poverty Index: Empirical evidence from households in India," Energy Policy, Elsevier, vol. 102(C), pages 540-550.
    23. Awaworyi Churchill, Sefa & Smyth, Russell, 2021. "Energy poverty and health: Panel data evidence from Australia," Energy Economics, Elsevier, vol. 97(C).
    24. Paramati, Sudharshan Reddy & Sinha, Avik & Dogan, Eyup, 2017. "The significance of renewable energy use for economic output and environmental protection: Evidence from the next 11 developing economies," MPRA Paper 100087, University Library of Munich, Germany.
    25. Karmaker, Shamal Chandra & Sen, Kanchan Kumar & Singha, Bipasha & Hosan, Shahadat & Chapman, Andrew J. & Saha, Bidyut Baran, 2022. "The mediating effect of energy poverty on child development: Empirical evidence from energy poor countries," Energy, Elsevier, vol. 243(C).
    26. Lan, Jing & Khan, Sufyan Ullah & Sadiq, Muhammad & Chien, Fengsheng & Baloch, Zulfiqar Ali, 2022. "Evaluating energy poverty and its effects using multi-dimensional based DEA-like mathematical composite indicator approach: Findings from Asia," Energy Policy, Elsevier, vol. 165(C).
    27. Nguyen, Canh Phuc & Nasir, Muhammad Ali, 2021. "An inquiry into the nexus between energy poverty and income inequality in the light of global evidence," Energy Economics, Elsevier, vol. 99(C).
    28. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    29. Ibrahiem, Dalia M. & Hanafy, Shaimaa A., 2021. "Do energy security and environmental quality contribute to renewable energy? The role of trade openness and energy use in North African countries," Renewable Energy, Elsevier, vol. 179(C), pages 667-678.
    30. Zhang, Huiming & Li, Lianshui & Zhou, Dequn & Zhou, Peng, 2014. "Political connections, government subsidies and firm financial performance: Evidence from renewable energy manufacturing in China," Renewable Energy, Elsevier, vol. 63(C), pages 330-336.
    31. Kahouli, Sondès & Okushima, Shinichiro, 2021. "Regional energy poverty reevaluated: A direct measurement approach applied to France and Japan," Energy Economics, Elsevier, vol. 102(C).
    32. Iddrisu, Insah & Bhattacharyya, Subhes C., 2015. "Sustainable Energy Development Index: A multi-dimensional indicator for measuring sustainable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 513-530.
    33. Zhao, Jun & Dong, Kangyin & Dong, Xiucheng & Shahbaz, Muhammad, 2022. "How renewable energy alleviate energy poverty? A global analysis," Renewable Energy, Elsevier, vol. 186(C), pages 299-311.
    34. Zhang, Shun & Liu, Xuyi, 2019. "The roles of international tourism and renewable energy in environment: New evidence from Asian countries," Renewable Energy, Elsevier, vol. 139(C), pages 385-394.
    35. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    36. Sadorsky, Perry, 2012. "Information communication technology and electricity consumption in emerging economies," Energy Policy, Elsevier, vol. 48(C), pages 130-136.
    37. Huang, Lingyun & Zou, Yanjun, 2020. "How to promote energy transition in China: From the perspectives of interregional relocation and environmental regulation," Energy Economics, Elsevier, vol. 92(C).
    38. Zhao, Jun & Jiang, Qingzhe & Dong, Xiucheng & Dong, Kangyin, 2021. "Assessing energy poverty and its effect on CO2 emissions: The case of China," Energy Economics, Elsevier, vol. 97(C).
    39. Ma, Qiang & Tariq, Muhammad & Mahmood, Haider & Khan, Zeeshan, 2022. "The nexus between digital economy and carbon dioxide emissions in China: The moderating role of investments in research and development," Technology in Society, Elsevier, vol. 68(C).
    40. Bukari, Chei & Broermann, Shanaz & Okai, Davidson, 2021. "Energy poverty and health expenditure: Evidence from Ghana," Energy Economics, Elsevier, vol. 103(C).
    41. Wang, Yong & Han, Linna & Ma, Xuejiao, 2022. "International tourism and economic vulnerability," Annals of Tourism Research, Elsevier, vol. 94(C).
    42. Oum, Sothea, 2019. "Energy poverty in the Lao PDR and its impacts on education and health," Energy Policy, Elsevier, vol. 132(C), pages 247-253.
    43. Yushen Tian & Siqin Xiong & Xiaoming Ma, 2017. "Analysis of the Potential Impacts on China’s Industrial Structure in Energy Consumption," Sustainability, MDPI, vol. 9(12), pages 1-13, December.
    44. Crawford, Jenny & French, Will, 2008. "A low-carbon future: Spatial planning's role in enhancing technological innovation in the built environment," Energy Policy, Elsevier, vol. 36(12), pages 4575-4579, December.
    45. John Hills, 2011. "Fuel Poverty: The problem and its measurement. Interim Report of the Fuel Poverty Review," CASE Reports casereport69, Centre for Analysis of Social Exclusion, LSE.
    46. Karpinska, Lilia & Śmiech, Sławomir, 2020. "Conceptualising housing costs: The hidden face of energy poverty in Poland," Energy Policy, Elsevier, vol. 147(C).
    47. Myovella, Godwin & Karacuka, Mehmet & Haucap, Justus, 2020. "Digitalization and economic growth: A comparative analysis of Sub-Saharan Africa and OECD economies," Telecommunications Policy, Elsevier, vol. 44(2).
    48. Salman, Muhammad & Zha, Donglan & Wang, Guimei, 2022. "Assessment of energy poverty convergence: A global analysis," Energy, Elsevier, vol. 255(C).
    49. Patrick Schulte & Heinz Welsch & Sascha Rexhäuser, 2016. "ICT and the Demand for Energy: Evidence from OECD Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(1), pages 119-146, January.
    50. Wu, Haitao & Hao, Yu & Ren, Siyu & Yang, Xiaodong & Xie, Guo, 2021. "Does internet development improve green total factor energy efficiency? Evidence from China," Energy Policy, Elsevier, vol. 153(C).
    51. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanwei Lyu & Yangyang Bai & Jinning Zhang, 2024. "Green finance policy and enterprise green development: Evidence from China," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 31(1), pages 414-432, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahbaz, Muhammad & Wang, Jianda & Dong, Kangyin & Zhao, Jun, 2022. "The impact of digital economy on energy transition across the globe: The mediating role of government governance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    2. Zhao, Jun & Dong, Kangyin & Dong, Xiucheng & Shahbaz, Muhammad, 2022. "How renewable energy alleviate energy poverty? A global analysis," Renewable Energy, Elsevier, vol. 186(C), pages 299-311.
    3. Recep Ulucak & Ramazan Sari & Seyfettin Erdogan & Rui Alexandre Castanho, 2021. "Bibliometric Literature Analysis of a Multi-Dimensional Sustainable Development Issue: Energy Poverty," Sustainability, MDPI, vol. 13(17), pages 1-21, August.
    4. Dong, Kangyin & Dou, Yue & Jiang, Qingzhe, 2022. "Income inequality, energy poverty, and energy efficiency: Who cause who and how?," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    5. Lan, Jing & Khan, Sufyan Ullah & Sadiq, Muhammad & Chien, Fengsheng & Baloch, Zulfiqar Ali, 2022. "Evaluating energy poverty and its effects using multi-dimensional based DEA-like mathematical composite indicator approach: Findings from Asia," Energy Policy, Elsevier, vol. 165(C).
    6. Moteng, Ghislain & Raghutla, Chandrashekar & Njangang, Henri & Nembot, Luc Ndeffo, 2023. "International sanctions and energy poverty in target developing countries," Energy Policy, Elsevier, vol. 179(C).
    7. Wang, Jianda & Dong, Kangyin & Dong, Xiucheng & Taghizadeh-Hesary, Farhad, 2022. "Assessing the digital economy and its carbon-mitigation effects: The case of China," Energy Economics, Elsevier, vol. 113(C).
    8. Junhong Qu & Xiaoli Hao, 2022. "Digital Economy, Financial Development, and Energy Poverty Based on Mediating Effects and a Spatial Autocorrelation Model," Sustainability, MDPI, vol. 14(15), pages 1-24, July.
    9. Muhammad Shafiullah & Zhilun Jiao & Muhammad Shahbaz & Kangyin Dong, 2023. "Examining energy poverty in Chinese households: An Engel curve approach," Australian Economic Papers, Wiley Blackwell, vol. 62(1), pages 149-184, March.
    10. Wang, Xiong & Yang, Wanping & Ren, Xiaohang & Lu, Zudi, 2023. "Can financial inclusion affect energy poverty in China? Evidence from a spatial econometric analysis," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 255-269.
    11. Djeunankan, Ronald & Njangang, Henri & Tadadjeu, Sosson & Kamguia, Brice, 2023. "Remittances and energy poverty: Fresh evidence from developing countries," Utilities Policy, Elsevier, vol. 81(C).
    12. Tiwari, Sunil & Si Mohammed, Kamel & Guesmi, Khaled, 2023. "A way forward to end energy poverty in China: Role of carbon-cutting targets and net-zero commitments," Energy Policy, Elsevier, vol. 180(C).
    13. Luan, Bingjiang & Zou, Hong & Huang, Junbing, 2023. "Digital divide and household energy poverty in China," Energy Economics, Elsevier, vol. 119(C).
    14. Siyou Xia & Yu Yang & Xiaoying Qian & Xin Xu, 2022. "Spatiotemporal Interaction and Socioeconomic Determinants of Rural Energy Poverty in China," IJERPH, MDPI, vol. 19(17), pages 1-15, August.
    15. Yaru Wang & Guitao Qiao & Mahmood Ahmad & Dan Yang, 2023. "Modeling the Impact of Fiscal Decentralization on Energy Poverty: Do Energy Efficiency and Technological Innovation Matter?," IJERPH, MDPI, vol. 20(5), pages 1-17, February.
    16. Kocak, Emrah & Ulug, Eyup Emre & Oralhan, Burcu, 2023. "The impact of electricity from renewable and non-renewable sources on energy poverty and greenhouse gas emissions (GHGs): Empirical evidence and policy implications," Energy, Elsevier, vol. 272(C).
    17. Dong, Kangyin & Ren, Xiaohang & Zhao, Jun, 2021. "How does low-carbon energy transition alleviate energy poverty in China? A nonparametric panel causality analysis," Energy Economics, Elsevier, vol. 103(C).
    18. Bezerra, Paula & Cruz, Talita & Mazzone, Antonella & Lucena, André F.P. & De Cian, Enrica & Schaeffer, Roberto, 2022. "The multidimensionality of energy poverty in Brazil: A historical analysis," Energy Policy, Elsevier, vol. 171(C).
    19. Zhao, Congyu & Dong, Kangyin & Jiang, Hong-Dian & Wang, Kun & Dong, Xiucheng, 2023. "How does energy poverty eradication realize the path to carbon unlocking? The case of China," Energy Economics, Elsevier, vol. 121(C).
    20. George E. Halkos & Panagiotis-Stavros C. Aslanidis, 2023. "Addressing Multidimensional Energy Poverty Implications on Achieving Sustainable Development," Energies, MDPI, vol. 16(9), pages 1-30, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223020868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.