IDEAS home Printed from https://ideas.repec.org/p/red/sed014/162.html
   My bibliography  Save this paper

The Rise of the Machines: Automation, Horizontal Innovation and Income Inequality

Author

Listed:
  • Morten Olsen

    (IESE)

  • David Hemous

    (INSEAD)

Abstract

We construct an endogenous growth model of directed technical change with automation (the introduction of machines which replace low-skill labor and complement high-skill labor) and horizontal innovation (the introduction of new products, which increases demand for both types of labor). For general processes of technical change, we demonstrate that although low-skill wages can drop during periods of increasing automation intensity, the asymptotic growth rate is weakly positive --- though lower than that of the economy. We then endogenize the evolution of technology and show that the transitional path follows three distinct phases. First, wages are low, such that few machines are used and low-skill wages keep pace with the growth rate of the economy. Then, as wages grow, the share of automated products increases and the economy substitutes towards the use of machines -- depressing the growth rate of low-skill wages (potentially to negative). Finally, as the economy reaches steady state, the share of automated products is constant and the relative growth rate of low-skill wages recovers somewhat, yet remains lower than that of the economy overall. Allowing workers to endogenously transition from low-skill to high-skill alleviates the growth in income inequality, but does not alter the structure of the model. We extend the model to include middle-skill workers and demonstrate that the model endogenously captures the defining characteristics of the U.S. income distribution over the past 50 years: initially a monotone dispersion of the income distribution, and thereafter a wage growth polarization in which middle-skill workers experience the lowest wage growth. Finally, in an extension we allow machines to be produced with a different technology than the consumption good. This allows for faster productivity growth for machines potentially leading to permanently negative growth of low-skill wages.

Suggested Citation

  • Morten Olsen & David Hemous, 2014. "The Rise of the Machines: Automation, Horizontal Innovation and Income Inequality," 2014 Meeting Papers 162, Society for Economic Dynamics.
  • Handle: RePEc:red:sed014:162
    as

    Download full text from publisher

    File URL: https://economicdynamics.org/meetpapers/2014/paper_162.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    2. Joseph Zeira, 1998. "Workers, Machines, and Economic Growth," The Quarterly Journal of Economics, Oxford University Press, vol. 113(4), pages 1091-1117.
    3. Nir Jaimovich & Henry E. Siu, 2020. "Job Polarization and Jobless Recoveries," The Review of Economics and Statistics, MIT Press, vol. 102(1), pages 129-147, March.
    4. Lawrence F. Katz & Kevin M. Murphy, 1992. "Changes in Relative Wages, 1963–1987: Supply and Demand Factors," The Quarterly Journal of Economics, Oxford University Press, vol. 107(1), pages 35-78.
    5. Maarten Goos & Alan Manning & Anna Salomons, 2009. "Job Polarization in Europe," American Economic Review, American Economic Association, vol. 99(2), pages 58-63, May.
    6. Aghion, Philippe & Howitt, Peter & Violante, Giovanni L, 2002. "General Purpose Technology and Wage Inequality," Journal of Economic Growth, Springer, vol. 7(4), pages 315-345, December.
    7. Hornstein, Andreas & Krusell, Per & Violante, Giovanni L., 2005. "The Effects of Technical Change on Labor Market Inequalities," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 20, pages 1275-1370, Elsevier.
    8. Autor, David H., 2013. "The "task approach" to labor markets : an overview," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 46(3), pages 185-199.
    9. Brent Neiman, 2014. "The Global Decline of the Labor Share," The Quarterly Journal of Economics, Oxford University Press, vol. 129(1), pages 61-103.
    10. Trimborn, Timo & Koch, Karl-Josef & Steger, Thomas M., 2008. "Multidimensional Transitional Dynamics: A Simple Numerical Procedure," Macroeconomic Dynamics, Cambridge University Press, vol. 12(3), pages 301-319, June.
    11. Zsófia L. Bárány & Christian Siegel, 2018. "Job Polarization and Structural Change," American Economic Journal: Macroeconomics, American Economic Association, vol. 10(1), pages 57-89, January.
    12. Charles Blackorby & R. Robert Russell, 1981. "The Morishima Elasticity of Substitution; Symmetry, Constancy, Separability, and its Relationship to the Hicks and Allen Elasticities," Review of Economic Studies, Oxford University Press, vol. 48(1), pages 147-158.
    13. Nordhaus, William D., 2007. "Two Centuries of Productivity Growth in Computing," The Journal of Economic History, Cambridge University Press, vol. 67(1), pages 128-159, March.
    14. Thomas Piketty & Gabriel Zucman, 2014. "Capital is Back: Wealth-Income Ratios in Rich Countries 1700–2010," The Quarterly Journal of Economics, Oxford University Press, vol. 129(3), pages 1255-1310.
    15. Oded Galor & Omer Moav, 2000. "Ability-Biased Technological Transition, Wage Inequality, and Economic Growth," The Quarterly Journal of Economics, Oxford University Press, vol. 115(2), pages 469-497.
    16. Francesca Mazzolari & Giuseppe Ragusa, 2013. "Spillovers from High-Skill Consumption to Low-Skill Labor Markets," The Review of Economics and Statistics, MIT Press, vol. 95(1), pages 74-86, March.
    17. Mark Doms & Timothy Dunne & Kenneth R. Troske, 1997. "Workers, Wages, and Technology," The Quarterly Journal of Economics, Oxford University Press, vol. 112(1), pages 253-290.
    18. David H. Autor & Frank Levy & Richard J. Murnane, 2003. "The skill content of recent technological change: an empirical exploration," Proceedings, Federal Reserve Bank of San Francisco, issue Nov.
    19. Michael Elsby & Bart Hobijn & Ayseful Sahin, 2013. "The Decline of the U.S. Labor Share," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 44(2 (Fall)), pages 1-63.
    20. David H. Autor & David Dorn, 2013. "The Growth of Low-Skill Service Jobs and the Polarization of the US Labor Market," American Economic Review, American Economic Association, vol. 103(5), pages 1553-1597, August.
    21. Jan Tinbergen, 1974. "Substitution Of Graduate By Other Labour," Kyklos, Wiley Blackwell, vol. 27(2), pages 217-226, January.
    22. Daron Acemoglu, 1998. "Why Do New Technologies Complement Skills? Directed Technical Change and Wage Inequality," The Quarterly Journal of Economics, Oxford University Press, vol. 113(4), pages 1055-1089.
    23. Arnaud Costinot & Jonathan Vogel, 2010. "Matching and Inequality in the World Economy," Journal of Political Economy, University of Chicago Press, vol. 118(4), pages 747-786, August.
    24. Francesco Caselli, 1999. "Technological Revolutions," American Economic Review, American Economic Association, vol. 89(1), pages 78-102, March.
    25. Alexandra Spitz-Oener, 2006. "Technical Change, Job Tasks, and Rising Educational Demands: Looking outside the Wage Structure," Journal of Labor Economics, University of Chicago Press, vol. 24(2), pages 235-270, April.
    26. Daron Acemoglu, 2002. "Directed Technical Change," Review of Economic Studies, Oxford University Press, vol. 69(4), pages 781-809.
    27. Daron Acemoglu & Veronica Guerrieri, 2008. "Capital Deepening and Nonbalanced Economic Growth," Journal of Political Economy, University of Chicago Press, vol. 116(3), pages 467-498, June.
    28. Peretto, Pietro F. & Seater, John J., 2013. "Factor-eliminating technical change," Journal of Monetary Economics, Elsevier, vol. 60(4), pages 459-473.
    29. Francisco J. Buera & Joseph P. Kaboski, 2012. "The Rise of the Service Economy," American Economic Review, American Economic Association, vol. 102(6), pages 2540-2569, October.
    30. Ariel Burstein & Eduardo Morales & Jonathan Vogel, 2015. "Accounting for Changes in Between-Group Inequality," NBER Working Papers 20855, National Bureau of Economic Research, Inc.
    31. Daron Acemoglu, 2010. "When Does Labor Scarcity Encourage Innovation?," Journal of Political Economy, University of Chicago Press, vol. 118(6), pages 1037-1078.
    32. Stephen Machin & John Van Reenen, 1998. "Technology and Changes in Skill Structure: Evidence from Seven OECD Countries," The Quarterly Journal of Economics, Oxford University Press, vol. 113(4), pages 1215-1244.
    33. repec:oup:qjecon:v:129:y:2013:i:1:p:61-103 is not listed on IDEAS
    34. David H. Autor & Lawrence F. Katz & Melissa S. Kearney, 2006. "The Polarization of the U.S. Labor Market," American Economic Review, American Economic Association, vol. 96(2), pages 189-194, May.
    35. Ann Bartel & Casey Ichniowski & Kathryn Shaw, 2007. "How Does Information Technology Affect Productivity? Plant-Level Comparisons of Product Innovation, Process Improvement, and Worker Skills," The Quarterly Journal of Economics, Oxford University Press, vol. 122(4), pages 1721-1758.
    36. Acemoglu, Daron & Autor, David, 2011. "Skills, Tasks and Technologies: Implications for Employment and Earnings," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 12, pages 1043-1171, Elsevier.
    37. Rodriguez Francisco & Jayadev Arjun, 2013. "The Declining Labor Share of Income," Journal of Globalization and Development, De Gruyter, vol. 3(2), pages 1-18, March.
    38. Aghion, Philippe & Howitt, Peter, 1996. "Research and Development in the Growth Process," Journal of Economic Growth, Springer, vol. 1(1), pages 49-73, March.
    39. Zsófia L. Bárány & Christian Siegel, 2018. "Job Polarization and Structural Change," American Economic Journal: Macroeconomics, American Economic Association, vol. 10(1), pages 57-89, January.
    40. Zsófia L. Bárány & Christian Siegel, 2018. "Job Polarization and Structural Change," American Economic Journal: Macroeconomics, American Economic Association, vol. 10(1), pages 57-89, January.
    41. Maarten Goos & Alan Manning, 2007. "Lousy and Lovely Jobs: The Rising Polarization of Work in Britain," The Review of Economics and Statistics, MIT Press, vol. 89(1), pages 118-133, February.
    42. Hornstein, Andreas & Krusell, Per & Violante, Giovanni L., 2005. "The Effects of Technical Change on Labor Market Inequalities," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 20, pages 1275-1370, Elsevier.
    43. Daron Acemoglu, 2007. "Equilibrium Bias of Technology," Econometrica, Econometric Society, vol. 75(5), pages 1371-1409, September.
    44. David Card & John E. DiNardo, 2002. "Skill-Biased Technological Change and Rising Wage Inequality: Some Problems and Puzzles," Journal of Labor Economics, University of Chicago Press, vol. 20(4), pages 733-783, October.
    45. Thomas Lemieux, 2006. "Increasing Residual Wage Inequality: Composition Effects, Noisy Data, or Rising Demand for Skill?," American Economic Review, American Economic Association, vol. 96(3), pages 461-498, June.
    46. Per Krusell & Lee E. Ohanian & JosÈ-Victor RÌos-Rull & Giovanni L. Violante, 2000. "Capital-Skill Complementarity and Inequality: A Macroeconomic Analysis," Econometrica, Econometric Society, vol. 68(5), pages 1029-1054, September.
    47. David H. Autor & Lawrence F. Katz & Melissa S. Kearney, 2008. "Trends in U.S. Wage Inequality: Revising the Revisionists," The Review of Economics and Statistics, MIT Press, vol. 90(2), pages 300-323, May.
    48. Tinbergen, Jan, 1974. "Substitution of Graduate by Other Labour," Kyklos, Wiley Blackwell, vol. 27(2), pages 217-226.
    49. Daron Acemoglu, 2002. "Technical Change, Inequality, and the Labor Market," Journal of Economic Literature, American Economic Association, vol. 40(1), pages 7-72, March.
    50. Jeffrey D. Sachs & Laurence J. Kotlikoff, 2012. "Smart Machines and Long-Term Misery," NBER Working Papers 18629, National Bureau of Economic Research, Inc.
    51. repec:pri:cepsud:113krusell is not listed on IDEAS
    52. Zsófia L. Bárány & Christian Siegel, 2018. "Job Polarization and Structural Change," American Economic Journal: Macroeconomics, American Economic Association, vol. 10(1), pages 57-89, January.
    53. Autor, David H., 2013. "The "task approach" to labor markets : an overview," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 46(3), pages 185-199.
    54. David H. Autor & Lawrence F. Katz & Alan B. Krueger, 1998. "Computing Inequality: Have Computers Changed the Labor Market?," The Quarterly Journal of Economics, Oxford University Press, vol. 113(4), pages 1169-1213.
    55. Zsófia L. Bárány & Christian Siegel, 2018. "Job Polarization and Structural Change," American Economic Journal: Macroeconomics, American Economic Association, vol. 10(1), pages 57-89, January.
    56. Huw Lloyd-Ellis, 1999. "Endogenous Technological Change and Wage Inequality," American Economic Review, American Economic Association, vol. 89(1), pages 47-77, March.
    57. Zsófia L. Bárány & Christian Siegel, 2018. "Job Polarization and Structural Change," American Economic Journal: Macroeconomics, American Economic Association, vol. 10(1), pages 57-89, January.
    58. Philippe Aghion & Peter Howitt, 1997. "Endogenous Growth Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262011662, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. Gries & R. Grundmann & I. Palnau & M. Redlin, 2017. "Innovations, growth and participation in advanced economies - a review of major concepts and findings," International Economics and Economic Policy, Springer, vol. 14(2), pages 293-351, April.
    2. Ariell Reshef, 2013. "Is Technological Change Biased Towards the Unskilled in Services? An Empirical Investigation," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 16(2), pages 312-331, April.
    3. Gallipoli, Giovanni & Makridis, Christos A., 2018. "Structural transformation and the rise of information technology," Journal of Monetary Economics, Elsevier, vol. 97(C), pages 91-110.
    4. Ariell Reshef, 2013. "Is Technological Change Biased Towards the Unskilled in Services? An Empirical Investigation," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 16(2), pages 312-331, April.
    5. Van Reenen, John, 2011. "Wage inequality, technology and trade: 21st century evidence," Labour Economics, Elsevier, vol. 18(6), pages 730-741.
    6. Lee, Tim & Shin, Yongseok, 2017. "Horizonatal and Vertical Polarization: Task-Specific Technological Change in a Multi-Sector Economy," TSE Working Papers 17-800, Toulouse School of Economics (TSE).
    7. Orhun Sevinc, 2017. "Skill-Biased Technical Change and Labor Market Polarization: The Role of Skill Heterogeneity Within Occupations," Discussion Papers 1728, Centre for Macroeconomics (CFM).
    8. Graetz, Georg, 2020. "Technological change and the Swedish labor market," Working Paper Series 2020:19, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    9. Bárány, Zsófia L. & Siegel, Christian, 2020. "Biased technological change and employment reallocation," Labour Economics, Elsevier, vol. 67(C).
    10. Zsófia L. Bárány & Christian Siegel, 2018. "Job Polarization and Structural Change," American Economic Journal: Macroeconomics, American Economic Association, vol. 10(1), pages 57-89, January.
    11. Zsófia L. Bárány & Christian Siegel, 2018. "Job Polarization and Structural Change," American Economic Journal: Macroeconomics, American Economic Association, vol. 10(1), pages 57-89, January.
    12. Wan-Jung Cheng, 2017. "Explaining Job Polarization: The Role of Heterogeneity in Capital Intensity," IEAS Working Paper : academic research 17-A015, Institute of Economics, Academia Sinica, Taipei, Taiwan, revised Feb 2018.
    13. Antonio Martins-Neto & Nanditha Mathew & Pierre Mohnen & Tania Treibich, 2021. "Is There Job Polarization in Developing Economies? A Review and Outlook," CESifo Working Paper Series 9444, CESifo.
    14. Zsófia L. Bárány & Christian Siegel, 2018. "Job Polarization and Structural Change," American Economic Journal: Macroeconomics, American Economic Association, vol. 10(1), pages 57-89, January.
    15. Zsófia L. Bárány & Christian Siegel, 2018. "Job Polarization and Structural Change," American Economic Journal: Macroeconomics, American Economic Association, vol. 10(1), pages 57-89, January.
    16. Zsófia L. Bárány & Christian Siegel, 2018. "Job Polarization and Structural Change," American Economic Journal: Macroeconomics, American Economic Association, vol. 10(1), pages 57-89, January.
    17. vom Lehn, Christian, 2018. "Understanding the decline in the U.S. labor share: Evidence from occupational tasks," European Economic Review, Elsevier, vol. 108(C), pages 191-220.
    18. Anderton, Robert & Jarvis, Valerie & Labhard, Vincent & Morgan, Julian & Petroulakis, Filippos & Vivian, Lara, 2020. "Virtually everywhere? Digitalisation and the euro area and EU economies," Occasional Paper Series 244, European Central Bank.
    19. Vahagn Jerbashian, 2019. "Automation and Job Polarization: On the Decline of Middling Occupations in Europe," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(5), pages 1095-1116, October.
    20. Acemoglu, Daron & Autor, David, 2011. "Skills, Tasks and Technologies: Implications for Employment and Earnings," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 12, pages 1043-1171, Elsevier.

    More about this item

    JEL classification:

    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production
    • E25 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Aggregate Factor Income Distribution
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:red:sed014:162. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/sedddea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christian Zimmermann (email available below). General contact details of provider: https://edirc.repec.org/data/sedddea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.