IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/11845.html
   My bibliography  Save this paper

Equilibrium Bias of Technology

Author

Listed:
  • Daron Acemoglu

Abstract

The study of the bias of new technologies is important both as part of the analysis of the nature of technology adoption and the direction of technological change, and to understand the distributional implications of new technologies. In this paper, I analyze the equilibrium bias of technology. I distinguish between the relative bias of technology, which concerns how the marginal product of a factor changes relative to that of another following the introduction of new technology, and the absolute bias, which looks only at the effect of new technology on the marginal product of a factor. The first part of the paper generalizes a number of existing results in the literature regarding the relative bias of technology. In particular, I show that when the menu of technological possibilities only allows for factor-augmenting technologies, the increase in the supply of a factor always induces technological change (or technology adoption) relatively biased towards that factor. This force can be strong enough to make the relative marginal product of a factor increasing in response to an increase in its supply, thus leading to an upward-sloping relative demand curve. However, I also show that the results about relative bias do not generalize when more general menus of technological possibilities are considered. In the second part of the paper, I show that there are much more general results about absolute bias. I prove that under fairly mild assumptions, an increase in the supply of a factor always induces changes in technology that are absolutely biased towards that factor, and these results hold both for small changes and large changes in supplies. Most importantly, I also determine the conditions under which the induced-technology response will be strong enough so that the price (marginal product) of a factor increases in response to an increase in its supply. These conditions correspond to a form of failure of joint concavity of the aggregate production function of the economy in factors and technology. This type of failure of joint concavity is quite possible in economies where equilibrium factor demands and technologies are decided by different agents.

Suggested Citation

  • Daron Acemoglu, 2005. "Equilibrium Bias of Technology," NBER Working Papers 11845, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:11845
    Note: EFG PR
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w11845.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Romer, Paul M, 1986. "Increasing Returns and Long-run Growth," Journal of Political Economy, University of Chicago Press, vol. 94(5), pages 1002-1037, October.
    2. Boldrin, Michele & Levine, David K., 2008. "Perfectly competitive innovation," Journal of Monetary Economics, Elsevier, vol. 55(3), pages 435-453, April.
    3. Joseph Farrell & Garth Saloner, 1985. "Standardization, Compatibility, and Innovation," RAND Journal of Economics, The RAND Corporation, vol. 16(1), pages 70-83, Spring.
    4. Reinganum, Jennifer F., 1981. "Dynamic games of innovation," Journal of Economic Theory, Elsevier, vol. 25(1), pages 21-41, August.
    5. Daron Acemoglu & Fabrizio Zilibotti, 2001. "Productivity Differences," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 116(2), pages 563-606.
    6. Young, Alwyn, 1993. "Invention and Bounded Learning by Doing," Journal of Political Economy, University of Chicago Press, vol. 101(3), pages 443-472, June.
    7. Aghion, Philippe & Howitt, Peter, 1992. "A Model of Growth through Creative Destruction," Econometrica, Econometric Society, vol. 60(2), pages 323-351, March.
    8. Gino A.Gancia, 2003. "Globalization, Divergence and Stagnation," Development Working Papers 174, Centro Studi Luca d'Agliano, University of Milano.
    9. Milgrom, Paul & Shannon, Chris, 1994. "Monotone Comparative Statics," Econometrica, Econometric Society, vol. 62(1), pages 157-180, January.
    10. Daron Acemoglu, 1998. "Why Do New Technologies Complement Skills? Directed Technical Change and Wage Inequality," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1055-1089.
    11. Kiley, Michael T, 1999. "The Supply of Skilled Labour and Skill-Biased Technological Progress," Economic Journal, Royal Economic Society, vol. 109(458), pages 708-724, October.
    12. Benabou, Roland, 2005. "Inequality, Technology and the Social Contract," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 25, pages 1595-1638, Elsevier.
    13. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    14. Williamson,Jeffrey G., 1990. "Coping with City Growth during the British Industrial Revolution," Cambridge Books, Cambridge University Press, number 9780521364805.
    15. Mathias Thoenig & Thierry Verdier, 2003. "A Theory of Defensive Skill-Biased Innovation and Globalization," American Economic Review, American Economic Association, vol. 93(3), pages 709-728, June.
    16. Daron Acemoglu, 2003. "Patterns of Skill Premia," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(2), pages 199-230.
    17. Katz, Michael L & Shapiro, Carl, 1985. "Network Externalities, Competition, and Compatibility," American Economic Review, American Economic Association, vol. 75(3), pages 424-440, June.
    18. James, John A. & Skinner, Jonathan S., 1985. "The Resolution of the Labor-Scarcity Paradox," The Journal of Economic History, Cambridge University Press, vol. 45(3), pages 513-540, September.
    19. Milgrom, Paul & Roberts, John, 1996. "The LeChatelier Principle," American Economic Review, American Economic Association, vol. 86(1), pages 173-179, March.
    20. Charles I. Jones, 2005. "The Shape of Production Functions and the Direction of Technical Change," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(2), pages 517-549.
    21. Grossman, Gene M & Shapiro, Carl, 1987. "Dynamic R&D Competition," Economic Journal, Royal Economic Society, vol. 97(386), pages 372-387, June.
    22. Duranton, Gilles, 2004. "The economics of production systems: Segmentation and skill-biased change," European Economic Review, Elsevier, vol. 48(2), pages 307-336, April.
    23. Daron Acemoglu, 2003. "Labor- And Capital-Augmenting Technical Change," Journal of the European Economic Association, MIT Press, vol. 1(1), pages 1-37, March.
    24. Francesco Caselli & Wilbur John Coleman II, 2006. "The World Technology Frontier," American Economic Review, American Economic Association, vol. 96(3), pages 499-522, June.
    25. Vives, Xavier, 1990. "Nash equilibrium with strategic complementarities," Journal of Mathematical Economics, Elsevier, vol. 19(3), pages 305-321.
    26. Lucas, Robert Jr., 1988. "On the mechanics of economic development," Journal of Monetary Economics, Elsevier, vol. 22(1), pages 3-42, July.
    27. Jennifer F. Reinganum, 1985. "Innovation and Industry Evolution," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 100(1), pages 81-99.
    28. William D. Nordhaus, 1973. "Some Skeptical Thoughts on the Theory of Induced Innovation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 87(2), pages 208-219.
    29. Partha Dasgupta & Joseph Stiglitz, 1980. "Uncertainty, Industrial Structure, and the Speed of R&D," Bell Journal of Economics, The RAND Corporation, vol. 11(1), pages 1-28, Spring.
    30. Emmanuel M. Drandakis & Edmond S. Phelps, 1965. "A Model of Induced Invention, Growth and Distribution," Cowles Foundation Discussion Papers 186, Cowles Foundation for Research in Economics, Yale University.
    31. Amir, Rabah, 1996. "Sensitivity analysis of multisector optimal economic dynamics," Journal of Mathematical Economics, Elsevier, vol. 25(1), pages 123-141.
    32. Nancy L. Stokey, 1991. "Human Capital, Product Quality, and Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(2), pages 587-616.
    33. Roberts, Kevin, 1999. "Rationality and the LeChatelier Principle," Journal of Economic Theory, Elsevier, vol. 87(2), pages 416-428, August.
    34. Nancy L. Stokey, 1995. "R&D and Economic Growth," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 62(3), pages 469-489.
    35. Milgrom, Paul & Roberts, John, 1990. "Rationalizability, Learning, and Equilibrium in Games with Strategic Complementarities," Econometrica, Econometric Society, vol. 58(6), pages 1255-1277, November.
    36. David H. Autor & Lawrence F. Katz & Alan B. Krueger, 1998. "Computing Inequality: Have Computers Changed the Labor Market?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1169-1213.
    37. Segerstrom, Paul S & Anant, T C A & Dinopoulos, Elias, 1990. "A Schumpeterian Model of the Product Life Cycle," American Economic Review, American Economic Association, vol. 80(5), pages 1077-1091, December.
    38. Milgrom, Paul & Roberts, John, 1990. "The Economics of Modern Manufacturing: Technology, Strategy, and Organization," American Economic Review, American Economic Association, vol. 80(3), pages 511-528, June.
    39. Silberberg, Eugene, 1974. "A revision of comparative statics methodology in economics, or, how to do comparative statics on the back of an envelope," Journal of Economic Theory, Elsevier, vol. 7(2), pages 159-172, February.
    40. Spence, Michael, 1984. "Cost Reduction, Competition, and Industry Performance," Econometrica, Econometric Society, vol. 52(1), pages 101-121, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    2. Gancia, Gino & Zilibotti, Fabrizio, 2005. "Horizontal Innovation in the Theory of Growth and Development," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 3, pages 111-170, Elsevier.
    3. Daron Acemoglu & Veronica Guerrieri, 2008. "Capital Deepening and Nonbalanced Economic Growth," Journal of Political Economy, University of Chicago Press, vol. 116(3), pages 467-498, June.
    4. Hollanders, Hugo & Weel, Bas ter, 1999. "Skill-Biased Technical Change: On Endogenous Growth, Wage Inequality and Government Intervention," Research Memorandum 013, Maastricht University, Maastricht Economic Research Institute on Innovation and Technology (MERIT).
    5. Afonso, Oscar & Leite, Rui, 2010. "Learning-by-doing, technology-adoption costs and wage inequality," Economic Modelling, Elsevier, vol. 27(5), pages 1069-1078, September.
    6. Daron Acemoglu, 2002. "Technical Change, Inequality, and the Labor Market," Journal of Economic Literature, American Economic Association, vol. 40(1), pages 7-72, March.
    7. Guido Cozzi & Silvia Galli, 2009. "Upstream Innovation Protection: Common Law Evolution and the Dynamics of Wage Inequality," Working Papers 2009_20, Business School - Economics, University of Glasgow.
    8. Acemoglu, Daron & Gancia, Gino & Zilibotti, Fabrizio, 2012. "Competing engines of growth: Innovation and standardization," Journal of Economic Theory, Elsevier, vol. 147(2), pages 570-601.3.
    9. Antonio Ciccone & Elias Papaioannou, 2009. "Human Capital, the Structure of Production, and Growth," The Review of Economics and Statistics, MIT Press, vol. 91(1), pages 66-82, February.
    10. Etro, Federico, 2017. "Research in economics and macroeconomics," Research in Economics, Elsevier, vol. 71(3), pages 373-383.
    11. Daron Acemoglu, 2010. "When Does Labor Scarcity Encourage Innovation?," Journal of Political Economy, University of Chicago Press, vol. 118(6), pages 1037-1078.
    12. Ekaterina Ponomareva & Alexandra Bozhechkova & Alexandr Knobel, 2012. "Factors of Economic Growth," Published Papers 172, Gaidar Institute for Economic Policy, revised 2013.
    13. Li, Shang-ao & Pan, Shan & Chi, Shawn, 2016. "North–South FDI and directed technical change," Economic Modelling, Elsevier, vol. 59(C), pages 425-435.
    14. Chu, Angus C. & Cozzi, Guido & Furukawa, Yuichi, 2016. "Unions, innovation and cross-country wage inequality," Journal of Economic Dynamics and Control, Elsevier, vol. 64(C), pages 104-118.
    15. Bucci, Alberto, 2008. "Population growth in a model of economic growth with human capital accumulation and horizontal R&D," Journal of Macroeconomics, Elsevier, vol. 30(3), pages 1124-1147, September.
    16. Orlando Gomes, 2004. "A Second-Order Approximation to Technology Choices," GE, Growth, Math methods 0409007, University Library of Munich, Germany.
    17. Michael Knoblach & Fabian Stöckl, 2020. "What Determines The Elasticity Of Substitution Between Capital And Labor? A Literature Review," Journal of Economic Surveys, Wiley Blackwell, vol. 34(4), pages 847-875, September.
    18. Daron Acemoglu, 2015. "Localised and Biased Technologies: Atkinson and Stiglitz's New View, Induced Innovations, and Directed Technological Change," Economic Journal, Royal Economic Society, vol. 0(583), pages 443-463, March.
    19. Leonard Kukić, 2021. "The Nature Of Technological Failure: Patterns Of Biased Technical Change In Socialist Europe," Journal of Economic Surveys, Wiley Blackwell, vol. 35(3), pages 895-925, July.
    20. Joseph Zeira, 2011. "Innovations, patent races and endogenous growth," Journal of Economic Growth, Springer, vol. 16(2), pages 135-156, June.

    More about this item

    JEL classification:

    • O30 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - General
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:11845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.