IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224037393.html
   My bibliography  Save this article

Hybrid game model for electricity trading and pricing among multiple microgrids and consumers based on demand-side complex networks

Author

Listed:
  • Wang, Dongxue
  • Fan, Ruguo
  • Xu, Xiaoxia
  • Du, Kang
  • Wang, Yitong
  • Dou, Xihao

Abstract

Local energy markets (LEMs) are pivotal for enhancing renewable energy consumption and facilitating green electricity by linking multiple microgrids (MMGs) and consumers. Existing studies often overlook the evolution of consumer purchasing strategies influenced by social spatial structures and social learning dynamics. This paper addresses this gap by introducing a hybrid game model for LEMs electricity trading and dynamic pricing, integrating demand-side complex network structures. This model encompasses dynamic interactions between MMGs and electricity and carbon markets, employing non-cooperative games among MMGs, complex network evolutionary game among consumers, and Stackelberg games between MMGs and consumers. It promotes efficient transactions and adaptive pricing through distributed algorithms optimizing equilibrium solutions. Key findings include: (1) Compared to Power-to-Grid and Peer-to-Peer models, our model increased MMGs' revenues by 44.10 % and 10.60 %, reduced consumers’ costs by 8.76 % and 1.15 %, and cut carbon emissions by 93.32 % and 77.30 %, significantly boosting economic and environmental benefits. (2) Complex network analysis underscores the importance of social learning in adjusting power consumption strategies and pricing mechanisms. (3) Multidimensional consumer decision-making enhances renewable energy valuation, fosters price competition among MMGs, and accelerates low-carbon transitions in LEMs, providing crucial theoretical support for LEM structure design and policy to enhance renewable energy use.

Suggested Citation

  • Wang, Dongxue & Fan, Ruguo & Xu, Xiaoxia & Du, Kang & Wang, Yitong & Dou, Xihao, 2024. "Hybrid game model for electricity trading and pricing among multiple microgrids and consumers based on demand-side complex networks," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224037393
    DOI: 10.1016/j.energy.2024.133961
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224037393
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133961?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erol, Özge & Başaran Filik, Ümmühan, 2022. "A Stackelberg game approach for energy sharing management of a microgrid providing flexibility to entities," Applied Energy, Elsevier, vol. 316(C).
    2. Liu, Jinqi & Wang, Jihong & Cardinal, Joel, 2022. "Evolution and reform of UK electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Yiangos Papanastasiou & Nicos Savva, 2017. "Dynamic Pricing in the Presence of Social Learning and Strategic Consumers," Management Science, INFORMS, vol. 63(4), pages 919-939, April.
    4. Ghadi, Mojtaba Jabbari & Rajabi, Amin & Ghavidel, Sahand & Azizivahed, Ali & Li, Li & Zhang, Jiangfeng, 2019. "From active distribution systems to decentralized microgrids: A review on regulations and planning approaches based on operational factors," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Wang, Zibo & Dong, Lei & Shi, Mengjie & Qiao, Ji & Jia, Hongjie & Mu, Yunfei & Pu, Tianjiao, 2023. "Market power modeling and restraint of aggregated prosumers in peer-to-peer energy trading: A game-theoretic approach," Applied Energy, Elsevier, vol. 348(C).
    6. Xu, Jiazhu & Yi, Yuqin, 2023. "Multi-microgrid low-carbon economy operation strategy considering both source and load uncertainty: A Nash bargaining approach," Energy, Elsevier, vol. 263(PB).
    7. Oprea, Simona-Vasilica & Bâra, Adela & Diaconita, Vlad, 2022. "A motivational local trading framework with 2-round auctioning and settlement rules embedded in smart contracts for a small citizen energy community," Renewable Energy, Elsevier, vol. 193(C), pages 225-239.
    8. Fikru, Mahelet G. & Canfield, Casey, 2022. "Demand for renewable energy via green electricity versus solar installation in Community Choice Aggregation," Renewable Energy, Elsevier, vol. 186(C), pages 769-779.
    9. Lee, Won-Poong & Han, Dongjun & Won, Dongjun, 2022. "Grid-Oriented Coordination Strategy of Prosumers Using Game-theoretic Peer-to-Peer Trading Framework in Energy Community," Applied Energy, Elsevier, vol. 326(C).
    10. Wu, Chun & Chen, Xingying & Hua, Haochen & Yu, Kun & Gan, Lei & Shen, Jun & Ding, Yi, 2024. "Peer-to-peer energy trading optimization for community prosumers considering carbon cap-and-trade," Applied Energy, Elsevier, vol. 358(C).
    11. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    12. Huang, Xingjun & Lin, Yun & Lim, Ming K. & Zhou, Fuli & Liu, Feng, 2022. "Electric vehicle charging station diffusion: An agent-based evolutionary game model in complex networks," Energy, Elsevier, vol. 257(C).
    13. Oprea, Simona-Vasilica & Bâra, Adela, 2021. "Devising a trading mechanism with a joint price adjustment for local electricity markets using blockchain. Insights for policy makers," Energy Policy, Elsevier, vol. 152(C).
    14. Mansouri, Seyed Amir & Ahmarinejad, Amir & Javadi, Mohammad Sadegh & Catalão, João P.S., 2020. "Two-stage stochastic framework for energy hubs planning considering demand response programs," Energy, Elsevier, vol. 206(C).
    15. Kimberly S. Wolske & Kenneth T. Gillingham & P. Wesley Schultz, 2020. "Peer influence on household energy behaviours," Nature Energy, Nature, vol. 5(3), pages 202-212, March.
    16. Wang, Dongxue & Fan, Ruguo & Yang, Peiwen & Du, Kang & Xu, Xiaoxia & Chen, Rongkai, 2024. "Research on floating real-time pricing strategy for microgrid operator in local energy market considering shared energy storage leasing," Applied Energy, Elsevier, vol. 368(C).
    17. Mansouri, Seyed Amir & Nematbakhsh, Emad & Ahmarinejad, Amir & Jordehi, Ahmad Rezaee & Javadi, Mohammad Sadegh & Marzband, Mousa, 2022. "A hierarchical scheduling framework for resilience enhancement of decentralized renewable-based microgrids considering proactive actions and mobile units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Verbong, Geert P.J. & Beemsterboer, Sjouke & Sengers, Frans, 2013. "Smart grids or smart users? Involving users in developing a low carbon electricity economy," Energy Policy, Elsevier, vol. 52(C), pages 117-125.
    19. Yael Parag & Benjamin K. Sovacool, 2016. "Electricity market design for the prosumer era," Nature Energy, Nature, vol. 1(4), pages 1-6, April.
    20. Li, Zhengmao & Xu, Yan, 2019. "Temporally-coordinated optimal operation of a multi-energy microgrid under diverse uncertainties," Applied Energy, Elsevier, vol. 240(C), pages 719-729.
    21. Gui, Emi Minghui & Diesendorf, Mark & MacGill, Iain, 2017. "Distributed energy infrastructure paradigm: Community microgrids in a new institutional economics context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1355-1365.
    22. Wang, Pengyu & Fang, Debin & Wang, Shuyi, 2022. "Optimal dynamic regulation in retail electricity market with consumer feedback and social learning," Energy Policy, Elsevier, vol. 168(C).
    23. Cao, GangCheng & Fang, Debin & Wang, Pengyu, 2021. "The impacts of social learning on a real-time pricing scheme in the electricity market," Applied Energy, Elsevier, vol. 291(C).
    24. Hojnik, Jana & Ruzzier, Mitja & Fabri, Stephanie & Klopčič, Alenka Lena, 2021. "What you give is what you get: Willingness to pay for green energy," Renewable Energy, Elsevier, vol. 174(C), pages 733-746.
    25. Bodong, Song & Wiseong, Jin & Chengmeng, Li & Khakichi, Aroos, 2023. "Economic management and planning based on a probabilistic model in a multi-energy market in the presence of renewable energy sources with a demand-side management program," Energy, Elsevier, vol. 269(C).
    26. Zhou, Kaile & Chu, Yibo & Hu, Rong, 2023. "Energy supply-demand interaction model integrating uncertainty forecasting and peer-to-peer energy trading," Energy, Elsevier, vol. 285(C).
    27. Simona-Vasilica Oprea & Adela Bâra & George Adrian Ifrim, 2021. "Optimizing the Electricity Consumption with a High Degree of Flexibility Using a Dynamic Tariff and Stackelberg Game," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 151-182, July.
    28. Yang, Peiwen & Fang, Debin & Wang, Shuyi, 2022. "Optimal trading mechanism for prosumer-centric local energy markets considering deviation assessment," Applied Energy, Elsevier, vol. 325(C).
    29. Qin, Yong & Xu, Zeshui & Wang, Xinxin & Škare, Marinko, 2022. "Green energy adoption and its determinants: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Dongxue & Fan, Ruguo & Yang, Peiwen & Du, Kang & Xu, Xiaoxia & Chen, Rongkai, 2024. "Research on floating real-time pricing strategy for microgrid operator in local energy market considering shared energy storage leasing," Applied Energy, Elsevier, vol. 368(C).
    2. Eunice Espe & Vidyasagar Potdar & Elizabeth Chang, 2018. "Prosumer Communities and Relationships in Smart Grids: A Literature Review, Evolution and Future Directions," Energies, MDPI, vol. 11(10), pages 1-24, September.
    3. Norouzi, Farshid & Hoppe, Thomas & Elizondo, Laura Ramirez & Bauer, Pavol, 2022. "A review of socio-technical barriers to Smart Microgrid development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Carattini, Stefano & Gillingham, Kenneth & Meng, Xiangyu & Yoeli, Erez, 2024. "Peer-to-peer solar and social rewards: Evidence from a field experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 219(C), pages 340-370.
    5. Imke Lammers & Lea Diestelmeier, 2017. "Experimenting with Law and Governance for Decentralized Electricity Systems: Adjusting Regulation to Reality?," Sustainability, MDPI, vol. 9(2), pages 1-14, February.
    6. Aleksandra Sus & Rafał Trzaska & Maciej Wilczyński & Joanna Hołub-Iwan, 2023. "Strategies of Energy Suppliers and Consumer Awareness in Green Energy Optics," Energies, MDPI, vol. 16(4), pages 1-23, February.
    7. Andreolli, Francesca & D’Alpaos, Chiara & Kort, Peter, 2025. "Does P2P trading favor investments in PV–Battery Systems?," Energy Economics, Elsevier, vol. 145(C).
    8. Moncada, J.A. & Tao, Z. & Valkering, P. & Meinke-Hubeny, F. & Delarue, E., 2021. "Influence of distribution tariff structures and peer effects on the adoption of distributed energy resources," Applied Energy, Elsevier, vol. 298(C).
    9. Milchram, Christine & Künneke, Rolf & Doorn, Neelke & van de Kaa, Geerten & Hillerbrand, Rafaela, 2020. "Designing for justice in electricity systems: A comparison of smart grid experiments in the Netherlands," Energy Policy, Elsevier, vol. 147(C).
    10. Wu, Chun & Chen, Xingying & Hua, Haochen & Yu, Kun & Gan, Lei & Wang, Bo, 2025. "Optimal energy management for prosumers and power plants considering transmission congestion based on carbon emission flow," Applied Energy, Elsevier, vol. 377(PB).
    11. Faia, Ricardo & Lezama, Fernando & Soares, João & Pinto, Tiago & Vale, Zita, 2024. "Local electricity markets: A review on benefits, barriers, current trends and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    12. Sousa, Tiago & Soares, Tiago & Pinson, Pierre & Moret, Fabio & Baroche, Thomas & Sorin, Etienne, 2019. "Peer-to-peer and community-based markets: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 367-378.
    13. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Hannes Agabus, 2023. "Market Mechanisms and Trading in Microgrid Local Electricity Markets: A Comprehensive Review," Energies, MDPI, vol. 16(5), pages 1-52, February.
    14. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Energy Behaviors of Prosumers in Example of Polish Households," Energies, MDPI, vol. 16(7), pages 1-26, March.
    15. Meng, Yuxiang & Ma, Gang & Yao, Yunting & Li, Hao, 2024. "Nash bargaining based integrated energy agent optimal operation strategy considering negotiation pricing for tradable green certificate," Applied Energy, Elsevier, vol. 356(C).
    16. Yang, Peiwen & Fang, Debin & Wang, Shuyi, 2022. "Optimal trading mechanism for prosumer-centric local energy markets considering deviation assessment," Applied Energy, Elsevier, vol. 325(C).
    17. Xia, Yuanxing & Xu, Qingshan & Fang, Jicheng & Tang, Rongchuan & Du, Pengwei, 2024. "Bipartite graph-based community-to-community matching in local energy market considering socially networked prosumers," Applied Energy, Elsevier, vol. 353(PB).
    18. Wolsink, Maarten, 2020. "Distributed energy systems as common goods: Socio-political acceptance of renewables in intelligent microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    19. Oprea, Simona-Vasilica & Bâra, Adela & Ciurea, Cristian-Eugen, 2022. "A novel cost-revenue allocation computation for the competitiveness of balancing responsible parties, including RES. Insights from the electricity market," Renewable Energy, Elsevier, vol. 199(C), pages 881-894.
    20. Li, Linyue & Li, Chenxiao & Alharthi, Yahya Z. & Wang, Yubin & Safaraliev, Murodbek, 2025. "A two-layer economic resilience model for distribution network restoration after natural disasters," Applied Energy, Elsevier, vol. 377(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224037393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.