IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v127y2020ics1364032120301350.html
   My bibliography  Save this article

Distributed energy systems as common goods: Socio-political acceptance of renewables in intelligent microgrids

Author

Listed:
  • Wolsink, Maarten

Abstract

The future social-technical system (STS) of power supply based on renewables depends heavily upon the rapid emergence of Distributed Energy Systems (DES). The prime object of Social Acceptance processes of renewable energy innovation becomes the issue of how to incorporate DES. The realization of this transformation requires the escape from locked-in hierarchy and standardized design of the centralized grid. This review elaborates the advanced conceptualization of Social Acceptance, particularly its socio-political layer. High diffusion of DES in intelligent microgrids leads to polycentricity replacing hierarchy. Therefore, the main object of 'socio-political acceptance' concerns institutional changes replacing hierarchy by co-production within STSs applying DES. Renewables become 'common goods' in such systems, instead of 'private' or 'public' goods. Systems providing 'common goods' like renewables -that are natural resources-show similarities to socialecological systems, the self-governing entities in common pool resources theory. Application of this institutional theory to co-production in DES leads to the following conclusions on socio-political acceptance. Renewables generation, integration, storage, intelligence and demand response require a shift towards co-producing prosumers. Electricity as an economic good must be redefined from commercial private commodity delivered in a public grid towards a co-produced common good. Essential for common prosumer-based DES is the application of peer-to-peer deliverance (P2P). Policy must avoid to interfere in this and also should remove legal obstructions and transaction costs for P2P and coproduction. As space is the prime scarcity factor for DES, prosumers' communities should also be empowered in co-producing land use decisions for construction of their DES infrastructures.

Suggested Citation

  • Wolsink, Maarten, 2020. "Distributed energy systems as common goods: Socio-political acceptance of renewables in intelligent microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
  • Handle: RePEc:eee:rensus:v:127:y:2020:i:c:s1364032120301350
    DOI: 10.1016/j.rser.2020.109841
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120301350
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.109841?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Negro, Simona O. & Alkemade, Floortje & Hekkert, Marko P., 2012. "Why does renewable energy diffuse so slowly? A review of innovation system problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3836-3846.
    2. Rodrigo Verschae & Takekazu Kato & Takashi Matsuyama, 2016. "Energy Management in Prosumer Communities: A Coordinated Approach," Energies, MDPI, vol. 9(7), pages 1-27, July.
    3. Siano, Pierluigi, 2014. "Demand response and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 461-478.
    4. Bouffard, François & Kirschen, Daniel S., 2008. "Centralised and distributed electricity systems," Energy Policy, Elsevier, vol. 36(12), pages 4504-4508, December.
    5. Paliwal, Priyanka & Patidar, N.P. & Nema, R.K., 2014. "Planning of grid integrated distributed generators: A review of technology, objectives and techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 557-570.
    6. Elinor Ostrom, 2010. "Beyond Markets and States: Polycentric Governance of Complex Economic Systems," American Economic Review, American Economic Association, vol. 100(3), pages 641-672, June.
    7. von Wirth, Timo & Gislason, Linda & Seidl, Roman, 2018. "Distributed energy systems on a neighborhood scale: Reviewing drivers of and barriers to social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2618-2628.
    8. Hastik, Richard & Basso, Stefano & Geitner, Clemens & Haida, Christin & Poljanec, Aleš & Portaccio, Alessia & Vrščaj, Borut & Walzer, Chris, 2015. "Renewable energies and ecosystem service impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 608-623.
    9. Scott Agnew & Paul Dargusch, 2015. "Effect of residential solar and storage on centralized electricity supply systems," Nature Climate Change, Nature, vol. 5(4), pages 315-318, April.
    10. Pestoff, 2014. "Collective Action and the Sustainability of Co-Production," Public Management Review, Taylor & Francis Journals, vol. 16(3), pages 383-401, April.
    11. Cajaiba-Santana, Giovany, 2014. "Social innovation: Moving the field forward. A conceptual framework," Technological Forecasting and Social Change, Elsevier, vol. 82(C), pages 42-51.
    12. Clastres, Cédric, 2011. "Smart grids: Another step towards competition, energy security and climate change objectives," Energy Policy, Elsevier, vol. 39(9), pages 5399-5408, September.
    13. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    14. Toke, David & Breukers, Sylvia & Wolsink, Maarten, 2008. "Wind power deployment outcomes: How can we account for the differences?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1129-1147, May.
    15. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    16. Taco Brandsen & Victor Pestoff, 2006. "Co-production, the third sector and the delivery of public services," Public Management Review, Taylor & Francis Journals, vol. 8(4), pages 493-501, December.
    17. Geels, Frank W. & Schot, Johan, 2007. "Typology of sociotechnical transition pathways," Research Policy, Elsevier, vol. 36(3), pages 399-417, April.
    18. del Río, Pablo & Linares, Pedro, 2014. "Back to the future? Rethinking auctions for renewable electricity support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 42-56.
    19. Seyfang, Gill & Park, Jung Jin & Smith, Adrian, 2013. "A thousand flowers blooming? An examination of community energy in the UK," Energy Policy, Elsevier, vol. 61(C), pages 977-989.
    20. Richard Cowell & Gill Bristow & Max Munday, 2011. "Acceptance, acceptability and environmental justice: the role of community benefits in wind energy development," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 54(4), pages 539-557.
    21. Hall, N. & Ashworth, P. & Devine-Wright, P., 2013. "Societal acceptance of wind farms: Analysis of four common themes across Australian case studies," Energy Policy, Elsevier, vol. 58(C), pages 200-208.
    22. Delucchi, Mark A. & Jacobson, Mark Z., 2011. "Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies," Energy Policy, Elsevier, vol. 39(3), pages 1170-1190, March.
    23. Akorede, Mudathir Funsho & Hizam, Hashim & Pouresmaeil, Edris, 2010. "Distributed energy resources and benefits to the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 724-734, February.
    24. Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
    25. Viral, Rajkumar & Khatod, D.K., 2012. "Optimal planning of distributed generation systems in distribution system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5146-5165.
    26. Paavola, Jouni, 2007. "Institutions and environmental governance: A reconceptualization," Ecological Economics, Elsevier, vol. 63(1), pages 93-103, June.
    27. Ropenus, Stephanie & Jacobsen, Henrik Klinge & Schröder, Sascha Thorsten, 2011. "Network regulation and support schemes – How policy interactions affect the integration of distributed generation," Renewable Energy, Elsevier, vol. 36(7), pages 1949-1956.
    28. Kern, Florian & Smith, Adrian, 2008. "Restructuring energy systems for sustainability? Energy transition policy in the Netherlands," Energy Policy, Elsevier, vol. 36(11), pages 4093-4103, November.
    29. S. Becker & M. Naumann & T. Moss, 2017. "Between coproduction and commons: understanding initiatives to reclaim urban energy provision in Berlin and Hamburg," Urban Research & Practice, Taylor & Francis Journals, vol. 10(1), pages 63-85, January.
    30. Michael McGinnis & James Walker, 2010. "Foundations of the Ostrom workshop: institutional analysis, polycentricity, and self-governance of the commons," Public Choice, Springer, vol. 143(3), pages 293-301, June.
    31. Breukers, Sylvia & Wolsink, Maarten, 2007. "Wind power implementation in changing institutional landscapes: An international comparison," Energy Policy, Elsevier, vol. 35(5), pages 2737-2750, May.
    32. O׳Connell, Niamh & Pinson, Pierre & Madsen, Henrik & O׳Malley, Mark, 2014. "Benefits and challenges of electrical demand response: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 686-699.
    33. Green, Jemma & Newman, Peter, 2017. "Citizen utilities: The emerging power paradigm," Energy Policy, Elsevier, vol. 105(C), pages 283-293.
    34. Kubli, Merla & Loock, Moritz & Wüstenhagen, Rolf, 2018. "The flexible prosumer: Measuring the willingness to co-create distributed flexibility," Energy Policy, Elsevier, vol. 114(C), pages 540-548.
    35. Sousa, Tiago & Soares, Tiago & Pinson, Pierre & Moret, Fabio & Baroche, Thomas & Sorin, Etienne, 2019. "Peer-to-peer and community-based markets: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 367-378.
    36. Stenner, Karen & Frederiks, Elisha R. & Hobman, Elizabeth V. & Cook, Stephanie, 2017. "Willingness to participate in direct load control: The role of consumer distrust," Applied Energy, Elsevier, vol. 189(C), pages 76-88.
    37. Thomas Morstyn & Niall Farrell & Sarah J. Darby & Malcolm D. McCulloch, 2018. "Using peer-to-peer energy-trading platforms to incentivize prosumers to form federated power plants," Nature Energy, Nature, vol. 3(2), pages 94-101, February.
    38. Barbour, Edward & Parra, David & Awwad, Zeyad & González, Marta C., 2018. "Community energy storage: A smart choice for the smart grid?," Applied Energy, Elsevier, vol. 212(C), pages 489-497.
    39. Jin, Ming & Feng, Wei & Liu, Ping & Marnay, Chris & Spanos, Costas, 2017. "MOD-DR: Microgrid optimal dispatch with demand response," Applied Energy, Elsevier, vol. 187(C), pages 758-776.
    40. Zhang, Chenghua & Wu, Jianzhong & Zhou, Yue & Cheng, Meng & Long, Chao, 2018. "Peer-to-Peer energy trading in a Microgrid," Applied Energy, Elsevier, vol. 220(C), pages 1-12.
    41. Yanine, Franco Fernando & Caballero, Federico I. & Sauma, Enzo E. & Córdova, Felisa M., 2014. "Building sustainable energy systems: Homeostatic control of grid-connected microgrids, as a means to reconcile power supply and energy demand response management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1168-1191.
    42. Cristina Acosta & Mariana Ortega & Till Bunsen & Binod Prasad Koirala & Amineh Ghorbani, 2018. "Facilitating Energy Transition through Energy Commons: An Application of Socio-Ecological Systems Framework for Integrated Community Energy Systems," Sustainability, MDPI, vol. 10(2), pages 1-15, January.
    43. Koirala, Binod Prasad & Koliou, Elta & Friege, Jonas & Hakvoort, Rudi A. & Herder, Paulien M., 2016. "Energetic communities for community energy: A review of key issues and trends shaping integrated community energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 722-744.
    44. Poudineh, Rahmatallah & Jamasb, Tooraj, 2014. "Distributed generation, storage, demand response and energy efficiency as alternatives to grid capacity enhancement," Energy Policy, Elsevier, vol. 67(C), pages 222-231.
    45. Mengelkamp, Esther & Gärttner, Johannes & Rock, Kerstin & Kessler, Scott & Orsini, Lawrence & Weinhardt, Christof, 2018. "Designing microgrid energy markets," Applied Energy, Elsevier, vol. 210(C), pages 870-880.
    46. Vogel, Philip, 2009. "Efficient investment signals for distributed generation," Energy Policy, Elsevier, vol. 37(9), pages 3665-3672, September.
    47. Justo, Jackson John & Mwasilu, Francis & Lee, Ju & Jung, Jin-Woo, 2013. "AC-microgrids versus DC-microgrids with distributed energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 387-405.
    48. Cossent, Rafael & Gómez, Tomás & Frías, Pablo, 2009. "Towards a future with large penetration of distributed generation: Is the current regulation of electricity distribution ready? Regulatory recommendations under a European perspective," Energy Policy, Elsevier, vol. 37(3), pages 1145-1155, March.
    49. Koirala, Binod Prasad & van Oost, Ellen & van der Windt, Henny, 2018. "Community energy storage: A responsible innovation towards a sustainable energy system?," Applied Energy, Elsevier, vol. 231(C), pages 570-585.
    50. Yael Parag & Benjamin K. Sovacool, 2016. "Electricity market design for the prosumer era," Nature Energy, Nature, vol. 1(4), pages 1-6, April.
    51. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    52. Krister Andersson & Elinor Ostrom, 2008. "Analyzing decentralized resource regimes from a polycentric perspective," Policy Sciences, Springer;Society of Policy Sciences, vol. 41(1), pages 71-93, March.
    53. Alberg Østergaard, Poul, 2003. "Transmission-grid requirements with scattered and fluctuating renewable electricity-sources," Applied Energy, Elsevier, vol. 76(1-3), pages 247-255, September.
    54. Jian Wang & Qianggang Wang & Niancheng Zhou & Yuan Chi, 2017. "A Novel Electricity Transaction Mode of Microgrids Based on Blockchain and Continuous Double Auction," Energies, MDPI, vol. 10(12), pages 1-22, November.
    55. Alanne, Kari & Saari, Arto, 2006. "Distributed energy generation and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(6), pages 539-558, December.
    56. Aitken, Mhairi, 2010. "Why we still don't understand the social aspects of wind power: A critique of key assumptions within the literature," Energy Policy, Elsevier, vol. 38(4), pages 1834-1841, April.
    57. Karneyeva, Yuliya & Wüstenhagen, Rolf, 2017. "Solar feed-in tariffs in a post-grid parity world: The role of risk, investor diversity and business models," Energy Policy, Elsevier, vol. 106(C), pages 445-456.
    58. Williamson, Oliver E, 1993. "Calculativeness, Trust, and Economic Organization," Journal of Law and Economics, University of Chicago Press, vol. 36(1), pages 453-486, April.
    59. Dermont, Clau & Ingold, Karin & Kammermann, Lorenz & Stadelmann-Steffen, Isabelle, 2017. "Bringing the policy making perspective in: A political science approach to social acceptance," Energy Policy, Elsevier, vol. 108(C), pages 359-368.
    60. Geels, Frank W., 2004. "From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory," Research Policy, Elsevier, vol. 33(6-7), pages 897-920, September.
    61. Grashof, Katherina, 2019. "Are auctions likely to deter community wind projects? And would this be problematic?," Energy Policy, Elsevier, vol. 125(C), pages 20-32.
    62. Manfren, Massimiliano & Caputo, Paola & Costa, Gaia, 2011. "Paradigm shift in urban energy systems through distributed generation: Methods and models," Applied Energy, Elsevier, vol. 88(4), pages 1032-1048, April.
    63. Ostrom, Elinor, 2006. "The value-added of laboratory experiments for the study of institutions and common-pool resources," Journal of Economic Behavior & Organization, Elsevier, vol. 61(2), pages 149-163, October.
    64. Chicco, Gianfranco & Mancarella, Pierluigi, 2009. "Distributed multi-generation: A comprehensive view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 535-551, April.
    65. Gui, Emi Minghui & Diesendorf, Mark & MacGill, Iain, 2017. "Distributed energy infrastructure paradigm: Community microgrids in a new institutional economics context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1355-1365.
    66. Neves, Diana & Silva, Carlos A. & Connors, Stephen, 2014. "Design and implementation of hybrid renewable energy systems on micro-communities: A review on case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 935-946.
    67. Alford, 2014. "The Multiple Facets of Co-Production: Building on the work of Elinor Ostrom," Public Management Review, Taylor & Francis Journals, vol. 16(3), pages 299-316, April.
    68. Müller, Simon C. & Welpe, Isabell M., 2018. "Sharing electricity storage at the community level: An empirical analysis of potential business models and barriers," Energy Policy, Elsevier, vol. 118(C), pages 492-503.
    69. Maarten Wolsink, 2018. "Co-production in distributed generation: renewable energy and creating space for fitting infrastructure within landscapes," Landscape Research, Taylor & Francis Journals, vol. 43(4), pages 542-561, May.
    70. Melville, Emilia & Christie, Ian & Burningham, Kate & Way, Celia & Hampshire, Phil, 2017. "The electric commons: A qualitative study of community accountability," Energy Policy, Elsevier, vol. 106(C), pages 12-21.
    71. Pia Buschmann & Angela Oels, 2019. "The overlooked role of discourse in breaking carbon lock‐in: The case of the German energy transition," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 10(3), May.
    72. Mhairi Aitken & Seonaidh McDonald & Peter Strachan, 2008. "Locating 'power' in wind power planning processes: the (not so) influential role of local objectors," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 51(6), pages 777-799.
    73. James Meadowcroft, 2009. "What about the politics? Sustainable development, transition management, and long term energy transitions," Policy Sciences, Springer;Society of Policy Sciences, vol. 42(4), pages 323-340, November.
    74. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
    75. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Weng, Peifen & Ren, Jianxing, 2018. "Coupling optimization of urban spatial structure and neighborhood-scale distributed energy systems," Energy, Elsevier, vol. 144(C), pages 472-481.
    76. Haidar, Ahmed M.A. & Muttaqi, Kashem & Sutanto, Danny, 2015. "Smart Grid and its future perspectives in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1375-1389.
    77. Olamide Jogunola & Augustine Ikpehai & Kelvin Anoh & Bamidele Adebisi & Mohammad Hammoudeh & Haris Gacanin & Georgina Harris, 2017. "Comparative Analysis of P2P Architectures for Energy Trading and Sharing," Energies, MDPI, vol. 11(1), pages 1-20, December.
    78. Holstenkamp, Lars, 2019. "What do we know about cooperative sustainable electrification in the global South? A synthesis of the literature and refined social-ecological systems framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 307-320.
    79. Maria A. Petrova, 2013. "NIMBYism revisited: public acceptance of wind energy in the United States," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 4(6), pages 575-601, November.
    80. Cédric Clastres, 2011. "Smart grids : Another step towards competition, energy security and climate change objectives," Post-Print halshs-00617702, HAL.
    81. Balta-Ozkan, Nazmiye & Watson, Tom & Mocca, Elisabetta, 2015. "Spatially uneven development and low carbon transitions: Insights from urban and regional planning," Energy Policy, Elsevier, vol. 85(C), pages 500-510.
    82. Miguel Manuel de Villena & Raphael Fonteneau & Axel Gautier & Damien Ernst, 2019. "Evaluating the Evolution of Distribution Networks under Different Regulatory Frameworks with Multi-Agent Modelling," Energies, MDPI, vol. 12(7), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    2. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    3. Bauwens, Thomas & Schraven, Daan & Drewing, Emily & Radtke, Jörg & Holstenkamp, Lars & Gotchev, Boris & Yildiz, Özgür, 2022. "Conceptualizing community in energy systems: A systematic review of 183 definitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Grashof, Katherina, 2019. "Are auctions likely to deter community wind projects? And would this be problematic?," Energy Policy, Elsevier, vol. 125(C), pages 20-32.
    5. Kobashi, Takuro & Yoshida, Takahiro & Yamagata, Yoshiki & Naito, Katsuhiko & Pfenninger, Stefan & Say, Kelvin & Takeda, Yasuhiro & Ahl, Amanda & Yarime, Masaru & Hara, Keishiro, 2020. "On the potential of “Photovoltaics + Electric vehicles” for deep decarbonization of Kyoto’s power systems: Techno-economic-social considerations," Applied Energy, Elsevier, vol. 275(C).
    6. Adil, Ali M. & Ko, Yekang, 2016. "Socio-technical evolution of Decentralized Energy Systems: A critical review and implications for urban planning and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1025-1037.
    7. Farrelly, M.A. & Tawfik, S., 2020. "Engaging in disruption: A review of emerging microgrids in Victoria, Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    8. Warneryd, Martin & Håkansson, Maria & Karltorp, Kersti, 2020. "Unpacking the complexity of community microgrids: A review of institutions’ roles for development of microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    9. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    10. Eunice Espe & Vidyasagar Potdar & Elizabeth Chang, 2018. "Prosumer Communities and Relationships in Smart Grids: A Literature Review, Evolution and Future Directions," Energies, MDPI, vol. 11(10), pages 1-24, September.
    11. Norouzi, Farshid & Hoppe, Thomas & Elizondo, Laura Ramirez & Bauer, Pavol, 2022. "A review of socio-technical barriers to Smart Microgrid development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Ableitner, Liliane & Tiefenbeck, Verena & Meeuw, Arne & Wörner, Anselma & Fleisch, Elgar & Wortmann, Felix, 2020. "User behavior in a real-world peer-to-peer electricity market," Applied Energy, Elsevier, vol. 270(C).
    13. Binod Prasad Koirala & Ellen van Oost & Henny van der Windt, 2020. "Innovation Dynamics of Socio-Technical Alignment in Community Energy Storage: The Cases of DrTen and Ecovat," Energies, MDPI, vol. 13(11), pages 1-22, June.
    14. Paul Lehmann & Felix Creutzig & Melf-Hinrich Ehlers & Nele Friedrichsen & Clemens Heuson & Lion Hirth & Robert Pietzcker, 2012. "Carbon Lock-Out: Advancing Renewable Energy Policy in Europe," Energies, MDPI, vol. 5(2), pages 1-32, February.
    15. Diestelmeier, Lea, 2019. "Changing power: Shifting the role of electricity consumers with blockchain technology – Policy implications for EU electricity law," Energy Policy, Elsevier, vol. 128(C), pages 189-196.
    16. Guerrero, Jaysson & Gebbran, Daniel & Mhanna, Sleiman & Chapman, Archie C. & Verbič, Gregor, 2020. "Towards a transactive energy system for integration of distributed energy resources: Home energy management, distributed optimal power flow, and peer-to-peer energy trading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    17. Rae, Callum & Kerr, Sandy & Maroto-Valer, M. Mercedes, 2020. "Upscaling smart local energy systems: A review of technical barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    18. Zade, Michel & Lumpp, Sebastian Dirk & Tzscheutschler, Peter & Wagner, Ulrich, 2022. "Satisfying user preferences in community-based local energy markets — Auction-based clearing approaches," Applied Energy, Elsevier, vol. 306(PA).
    19. Tushar, Wayes & Yuen, Chau & Saha, Tapan K. & Morstyn, Thomas & Chapman, Archie C. & Alam, M. Jan E. & Hanif, Sarmad & Poor, H. Vincent, 2021. "Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges," Applied Energy, Elsevier, vol. 282(PA).
    20. Petrovich, Beatrice & Kubli, Merla, 2023. "Energy communities for companies: Executives’ preferences for local and renewable energy procurement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:127:y:2020:i:c:s1364032120301350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.