IDEAS home Printed from
   My bibliography  Save this article

Citizen utilities: The emerging power paradigm


  • Green, Jemma
  • Newman, Peter


The emergence of citizen-based power systems in an integrated grid has been anticipated for decades. We can reveal how this is emerging in practice due to the significant uptake of solar photovoltaics (solar PV) and now battery storage in Perth, Australia. The high cost of electricity, high radiant energy levels and easy access to cheap Chinese technology, has led to dramatic buying during Perth's recent boomtown years. The traditional uni-directional power system is rapidly disrupting and this paper assesses where this may lead and what it means for the grid. Results of detailed monitoring in a solar powered house along with the impact of a battery storage system show the impact on the traditional grid is substantial but it will still be needed and must therefore adapt to the new distributed, bi-directional energy system. Surveys and price trajectories reveal how the trends to solar power storage will continue and how a citizen utility paradigm will emerge as the future grid building block using new blockchain support systems. Responses from utilities are then see to be fight, flight or innovate.

Suggested Citation

  • Green, Jemma & Newman, Peter, 2017. "Citizen utilities: The emerging power paradigm," Energy Policy, Elsevier, vol. 105(C), pages 283-293.
  • Handle: RePEc:eee:enepol:v:105:y:2017:i:c:p:283-293
    DOI: 10.1016/j.enpol.2017.02.004

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. He, Yuqing, 2012. "Experimental test of utility maximization," Economics Discussion Papers 2012-32, Kiel Institute for the World Economy (IfW Kiel).
    2. Zhang, Fang & Deng, Hao & Margolis, Robert & Su, Jun, 2015. "Analysis of distributed-generation photovoltaic deployment, installation time and cost, market barriers, and policies in China," Energy Policy, Elsevier, vol. 81(C), pages 43-55.
    3. Fan, Jingwen & Minford, Patrick & Ou, Zhirong, 2016. "The role of fiscal policy in Britain's Great Inflation," Economic Modelling, Elsevier, vol. 58(C), pages 203-218.
    4. ., 2016. "Monetary policy and monetary crises," Chapters, in: The International Monetary System and the Theory of Monetary Systems, chapter 22, pages 217-227, Edward Elgar Publishing.
    5. Simpson, Genevieve & Clifton, Julian, 2014. "Picking winners and policy uncertainty: Stakeholder perceptions of Australia's Renewable Energy Target," Renewable Energy, Elsevier, vol. 67(C), pages 128-135.
    6. Joe Peek & Eric S. Rosengren & Geoffrey M. B. Tootell, 2016. "Does Fed policy reveal a ternary mandate?," Working Papers 16-11, Federal Reserve Bank of Boston.
    7. Andy Extance, 2015. "The future of cryptocurrencies: Bitcoin and beyond," Nature, Nature, vol. 526(7571), pages 21-23, October.
    8. Zhang, Sufang & He, Yongxiu, 2013. "Analysis on the development and policy of solar PV power in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 393-401.
    9. ., 2012. "Gas Utility," Chapters, in: Regulatory Reform of Public Utilities, chapter 4, pages 65-74, Edward Elgar Publishing.
    10. Unido, 2012. "World Statistics on Mining and Utilities," Books, Edward Elgar Publishing, number 15007.
    11. Alanne, Kari & Saari, Arto, 2006. "Distributed energy generation and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(6), pages 539-558, December.
    12. Peter Newton & Peter Newman, 2013. "The Geography of Solar Photovoltaics (PV) and a New Low Carbon Urban Transition Theory," Sustainability, MDPI, vol. 5(6), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Ying & Campana, Pietro Elia & Yan, Jinyue, 2020. "Potential of unsubsidized distributed solar PV to replace coal-fired power plants, and profits classification in Chinese cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Chenjun Sun & Zengqiang Mi & Hui Ren & Fei Wang & Jing Chen & David Watts & Jinling Lu, 2018. "Study on the Incentives Mechanism for the Development of Distributed Photovoltaic Systems from a Long-Term Perspective," Energies, MDPI, vol. 11(5), pages 1-18, May.
    3. Kayser, Dirk, 2016. "Solar photovoltaic projects in China: High investment risks and the need for institutional response," Applied Energy, Elsevier, vol. 174(C), pages 144-152.
    4. Zhang, Sufang, 2016. "Analysis of DSPV (distributed solar PV) power policy in China," Energy, Elsevier, vol. 98(C), pages 92-100.
    5. Zhang, Lei & Qin, Quande & Wei, Yi-Ming, 2019. "China's distributed energy policies: Evolution, instruments and recommendation," Energy Policy, Elsevier, vol. 125(C), pages 55-64.
    6. Zhou, Dequn & Chong, Zhaotian & Wang, Qunwei, 2020. "What is the future policy for photovoltaic power applications in China? Lessons from the past," Resources Policy, Elsevier, vol. 65(C).
    7. Eid, Cherrelle & Codani, Paul & Perez, Yannick & Reneses, Javier & Hakvoort, Rudi, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 237-247.
    8. Funcke, Simon & Bauknecht, Dierk, 2016. "Typology of centralised and decentralised visions for electricity infrastructure," Utilities Policy, Elsevier, vol. 40(C), pages 67-74.
    9. Gandenberger, Carsten, 2018. "China's trajectory from production to innovation: Insights from the photovoltaics sector," Working Papers "Sustainability and Innovation" S03/2018, Fraunhofer Institute for Systems and Innovation Research (ISI).
    10. Moroni, Stefano & Antoniucci, Valentina & Bisello, Adriano, 2016. "Energy sprawl, land taking and distributed generation: towards a multi-layered density," Energy Policy, Elsevier, vol. 98(C), pages 266-273.
    11. L. Mundaca & H. Moncreiff, 2021. "New Perspectives on Green Energy Defaults," Journal of Consumer Policy, Springer, vol. 44(3), pages 357-383, September.
    12. Lan, Haifeng & Gou, Zhonghua & Yang, Linchuan, 2020. "House price premium associated with residential solar photovoltaics and the effect from feed-in tariffs: A case study of Southport in Queensland, Australia," Renewable Energy, Elsevier, vol. 161(C), pages 907-916.
    13. Xue, Jinlin, 2017. "Photovoltaic agriculture - New opportunity for photovoltaic applications in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1-9.
    14. Awate, Snehal & Ajith, V. & Ajwani-Ramchandani, Raji, 2018. "Catch-up as a Survival Strategy in the Solar Power Industry," Journal of International Management, Elsevier, vol. 24(2), pages 179-194.
    15. Sungho Son & Nam-Wook Cho, 2020. "Technology Fusion Characteristics in the Solar Photovoltaic Industry of South Korea: A Patent Network Analysis Using IPC Co-Occurrence," Sustainability, MDPI, vol. 12(21), pages 1-19, October.
    16. Krzysztof Mik & Paweł Zawadzki & Jan Tarłowski & Marcin Bugaj & Piotr Grygiel & Sebastian Bykuć, 2021. "Multifaceted Analyses of Four Different Prototype Lightweight Photovoltaic Modules of Novel Structure," Energies, MDPI, vol. 14(8), pages 1-16, April.
    17. Montes, Gabriel Caldas & da Cunha Lima, Luiza Leitão, 2018. "Effects of fiscal transparency on inflation and inflation expectations: Empirical evidence from developed and developing countries," The Quarterly Review of Economics and Finance, Elsevier, vol. 70(C), pages 26-37.
    18. Johannes Zahner, 2020. "Above, but close to two percent. Evidence on the ECB’s inflation target using text mining," MAGKS Papers on Economics 202046, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    19. Liu, Chang & Liu, Linlin & Zhang, Dayong & Fu, Jiasha, 2021. "How does the capital market respond to policy shocks? Evidence from listed solar photovoltaic companies in China," Energy Policy, Elsevier, vol. 151(C).
    20. Wang, Yong-hua & Luo, Guo-liang & Guo, Yi-wei, 2014. "Why is there overcapacity in China's PV industry in its early growth stage?," Renewable Energy, Elsevier, vol. 72(C), pages 188-194.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:105:y:2017:i:c:p:283-293. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.