IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v93y2018icp158-164.html
   My bibliography  Save this article

What drives the market for plug-in electric vehicles? - A review of international PEV market diffusion models

Author

Listed:
  • Gnann, Till
  • Stephens, Thomas S.
  • Lin, Zhenhong
  • Plötz, Patrick
  • Liu, Changzheng
  • Brokate, Jens

Abstract

The market diffusion of plug-in electric vehicles (PEVs) is a research topic which is often addressed, yet PEV market diffusion models differ in their approaches, the factors they include and results. Here, 40 market diffusion models for PEVs are compared in their scope, approach and findings to point out similarities or differences and make recommendations for future improvements in modeling in this field. Important input factors for the US are the purchase price and operating costs, while for Germany energy prices and the charging infrastructure are mentioned more often. Furthermore, larger sales shares of plug-in hybrid electric vehicles than battery electric vehicles are often found in the short term results (until 2030) while the picture is not so clear for the medium- to long-term. Future market penetration models should include specific PEV features like the limited range of battery electric vehicles or access to charging infrastructure, which are currently not covered by many models. Also, the integration of current policy regulations and, if possible, indirect policy incentives would enhance research in this field.

Suggested Citation

  • Gnann, Till & Stephens, Thomas S. & Lin, Zhenhong & Plötz, Patrick & Liu, Changzheng & Brokate, Jens, 2018. "What drives the market for plug-in electric vehicles? - A review of international PEV market diffusion models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 158-164.
  • Handle: RePEc:eee:rensus:v:93:y:2018:i:c:p:158-164
    DOI: 10.1016/j.rser.2018.03.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118301497
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.03.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gnann, Till & Plötz, Patrick & Kühn, André & Wietschel, Martin, 2015. "Modelling market diffusion of electric vehicles with real world driving data – German market and policy options," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 95-112.
    2. Francoise Nemry & Martijn Brons, 2010. "Plug-in Hybrid and Battery Electric Vehicles. Market penetration scenarios of electric drive vehicles," JRC Working Papers JRC58748, Joint Research Centre (Seville site).
    3. Yabe, Kuniaki & Shinoda, Yukio & Seki, Tomomichi & Tanaka, Hideo & Akisawa, Atsushi, 2012. "Market penetration speed and effects on CO2 reduction of electric vehicles and plug-in hybrid electric vehicles in Japan," Energy Policy, Elsevier, vol. 45(C), pages 529-540.
    4. Shepherd, Simon & Bonsall, Peter & Harrison, Gillian, 2012. "Factors affecting future demand for electric vehicles: A model based study," Transport Policy, Elsevier, vol. 20(C), pages 62-74.
    5. Stephane Hess & Mark Fowler & Thomas Adler & Aniss Bahreinian, 2012. "A joint model for vehicle type and fuel type choice: evidence from a cross-nested logit study," Transportation, Springer, vol. 39(3), pages 593-625, May.
    6. Björn Nykvist & Måns Nilsson, 2015. "Rapidly falling costs of battery packs for electric vehicles," Nature Climate Change, Nature, vol. 5(4), pages 329-332, April.
    7. Gnann, Till & Plötz, Patrick, 2015. "A review of combined models for market diffusion of alternative fuel vehicles and their refueling infrastructure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 783-793.
    8. Plötz, Patrick & Gnann, Till & Wietschel, Martin, 2014. "Modelling market diffusion of electric vehicles with real world driving data — Part I: Model structure and validation," Ecological Economics, Elsevier, vol. 107(C), pages 411-421.
    9. Gnann, Till & Plötz, Patrick & Kühn, André & Wietschel, Martin, 2014. "Modelling market diffusion of electric vehicles with real world driving data: German market and policy options," Working Papers "Sustainability and Innovation" S12/2014, Fraunhofer Institute for Systems and Innovation Research (ISI).
    10. Wu, Geng & Inderbitzin, Alessandro & Bening, Catharina, 2015. "Total cost of ownership of electric vehicles compared to conventional vehicles: A probabilistic analysis and projection across market segments," Energy Policy, Elsevier, vol. 80(C), pages 196-214.
    11. Pasaoglu, Guzay & Harrison, Gillian & Jones, Lee & Hill, Andrew & Beaudet, Alexandre & Thiel, Christian, 2016. "A system dynamics based market agent model simulating future powertrain technology transition: Scenarios in the EU light duty vehicle road transport sector," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 133-146.
    12. Noori, Mehdi & Tatari, Omer, 2016. "Development of an agent-based model for regional market penetration projections of electric vehicles in the United States," Energy, Elsevier, vol. 96(C), pages 215-230.
    13. Driscoll, Áine & Lyons, Seán & Mariuzzo, Franco & Tol, Richard S.J., 2013. "Simulating demand for electric vehicles using revealed preference data," Energy Policy, Elsevier, vol. 62(C), pages 686-696.
    14. Daziano, Ricardo A. & Chiew, Esther, 2012. "Electric vehicles rising from the dead: Data needs for forecasting consumer response toward sustainable energy sources in personal transportation," Energy Policy, Elsevier, vol. 51(C), pages 876-894.
    15. Tran, Martino, 2012. "Technology-behavioural modelling of energy innovation diffusion in the UK," Applied Energy, Elsevier, vol. 95(C), pages 1-11.
    16. Lee, Duk Hee & Park, Sang Yong & Kim, Jong Wook & Lee, Seong Kon, 2013. "Analysis on the feedback effect for the diffusion of innovative technologies focusing on the green car," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 498-509.
    17. Plötz, Patrick & Gnann, Till & Wietschel, Martin, 2014. "Modelling market diffusion of electric vehicles with real world driving data. Part I: Model structure and validation," Working Papers "Sustainability and Innovation" S4/2014, Fraunhofer Institute for Systems and Innovation Research (ISI).
    18. Shafiei, Ehsan & Thorkelsson, Hedinn & Ásgeirsson, Eyjólfur Ingi & Davidsdottir, Brynhildur & Raberto, Marco & Stefansson, Hlynur, 2012. "An agent-based modeling approach to predict the evolution of market share of electric vehicles: A case study from Iceland," Technological Forecasting and Social Change, Elsevier, vol. 79(9), pages 1638-1653.
    19. Maxwell Brown, 2013. "Catching the PHEVer: Simulating Electric Vehicle Diffusion with an Agent-Based Mixed Logit Model of Vehicle Choice," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 16(2), pages 1-5.
    20. Sierzchula, William & Bakker, Sjoerd & Maat, Kees & van Wee, Bert, 2014. "The influence of financial incentives and other socio-economic factors on electric vehicle adoption," Energy Policy, Elsevier, vol. 68(C), pages 183-194.
    21. Karsten Kieckhäfer & Thomas Volling & Thomas Stefan Spengler, 2014. "A Hybrid Simulation Approach for Estimating the Market Share Evolution of Electric Vehicles," Transportation Science, INFORMS, vol. 48(4), pages 651-670, November.
    22. Kihm, Alexander & Trommer, Stefan, 2014. "The new car market for electric vehicles and the potential for fuel substitution," Energy Policy, Elsevier, vol. 73(C), pages 147-157.
    23. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ranjit R. Desai & Eric Hittinger & Eric Williams, 2022. "Interaction of Consumer Heterogeneity and Technological Progress in the US Electric Vehicle Market," Energies, MDPI, vol. 15(13), pages 1-25, June.
    2. Gnann, Till & Plötz, Patrick & Kühn, André & Wietschel, Martin, 2015. "Modelling market diffusion of electric vehicles with real world driving data – German market and policy options," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 95-112.
    3. Gnann, T. & Speth, D. & Seddig, K. & Stich, M. & Schade, W. & Gómez Vilchez, J.J., 2022. "How to integrate real-world user behavior into models of the market diffusion of alternative fuels in passenger cars - An in-depth comparison of three models for Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Schwab, Julia & Sölch, Christian & Zöttl, Gregor, 2022. "Electric Vehicle Cost in 2035: The impact of market penetration and charging strategies," Energy Economics, Elsevier, vol. 114(C).
    5. Harrison, Gillian & Thiel, Christian, 2017. "An exploratory policy analysis of electric vehicle sales competition and sensitivity to infrastructure in Europe," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 165-178.
    6. Wolbertus, Rick & van den Hoed, Robert & Kroesen, Maarten & Chorus, Caspar, 2021. "Charging infrastructure roll-out strategies for large scale introduction of electric vehicles in urban areas: An agent-based simulation study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 262-285.
    7. Zhang, Cen & Schmöcker, Jan-Dirk & Kuwahara, Masahiro & Nakamura, Toshiyuki & Uno, Nobuhiro, 2020. "A diffusion model for estimating adoption patterns of a one-way carsharing system in its initial years," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 135-150.
    8. Gómez Vilchez, Jonatan J. & Jochem, Patrick, 2019. "Simulating vehicle fleet composition: A review of system dynamics models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    9. Globisch, Joachim & Plötz, Patrick & Dütschke, Elisabeth & Wietschel, Martin, 2019. "Consumer preferences for public charging infrastructure for electric vehicles," Transport Policy, Elsevier, vol. 81(C), pages 54-63.
    10. Ensslen, Axel & Gnann, Till & Jochem, Patrick & Plötz, Patrick & Dütschke, Elisabeth & Fichtner, Wolf, 2020. "Can product service systems support electric vehicle adoption?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 343-359.
    11. Scheller, Fabian & Johanning, Simon & Bruckner, Thomas, 2018. "IRPsim: A techno-socio-economic energy system model vision for business strategy assessment at municipal level," Contributions of the Institute for Infrastructure and Resources Management 02/2018, University of Leipzig, Institute for Infrastructure and Resources Management.
    12. Sykes, Maxwell & Axsen, Jonn, 2017. "No free ride to zero-emissions: Simulating a region's need to implement its own zero-emissions vehicle (ZEV) mandate to achieve 2050 GHG targets," Energy Policy, Elsevier, vol. 110(C), pages 447-460.
    13. Scheller, Fabian & Johanning, Simon & Bruckner, Thomas, 2019. "A review of designing empirically grounded agent-based models of innovation diffusion: Development process, conceptual foundation and research agenda," Contributions of the Institute for Infrastructure and Resources Management 01/2019, University of Leipzig, Institute for Infrastructure and Resources Management.
    14. Sun, Xiaohua & Liu, Xiaoling & Wang, Yun & Yuan, Fang, 2019. "The effects of public subsidies on emerging industry: An agent-based model of the electric vehicle industry," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 281-295.
    15. Jiali Yu & Peng Yang & Kai Zhang & Faping Wang & Lixin Miao, 2018. "Evaluating the Effect of Policies and the Development of Charging Infrastructure on Electric Vehicle Diffusion in China," Sustainability, MDPI, vol. 10(10), pages 1-25, September.
    16. Tobias Buchmann & Patrick Wolf & Stefan Fidaschek, 2021. "Stimulating E-Mobility Diffusion in Germany (EMOSIM): An Agent-Based Simulation Approach," Energies, MDPI, vol. 14(3), pages 1-25, January.
    17. Riesz, Jenny & Sotiriadis, Claire & Ambach, Daisy & Donovan, Stuart, 2016. "Quantifying the costs of a rapid transition to electric vehicles," Applied Energy, Elsevier, vol. 180(C), pages 287-300.
    18. Krupa, Joseph S. & Rizzo, Donna M. & Eppstein, Margaret J. & Brad Lanute, D. & Gaalema, Diann E. & Lakkaraju, Kiran & Warrender, Christina E., 2014. "Analysis of a consumer survey on plug-in hybrid electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 14-31.
    19. Esteban Lopez-Arboleda & Alfonso T. Sarmiento & Laura M. Cardenas, 2021. "Systemic approach for integration of sustainability in evaluation of public policies for adoption of electric vehicles," Systemic Practice and Action Research, Springer, vol. 34(4), pages 399-417, August.
    20. Xiong, Siqin & Yuan, Yi & Yao, Jia & Bai, Bo & Ma, Xiaoming, 2023. "Exploring consumer preferences for electric vehicles based on the random coefficient logit model," Energy, Elsevier, vol. 263(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:93:y:2018:i:c:p:158-164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.