IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v80y2013i3p498-509.html
   My bibliography  Save this article

Analysis on the feedback effect for the diffusion of innovative technologies focusing on the green car

Author

Listed:
  • Lee, Duk Hee
  • Park, Sang Yong
  • Kim, Jong Wook
  • Lee, Seong Kon

Abstract

Previous studies of technical competitive relationship have mostly focused on the analysis of one-directional impact of the technical attribute on market share. However, there is a cyclical feedback effect between the technical attributes and market share, and that means the small difference of competitiveness at the early phase of technology diffusion can greatly affect the final market share. As such, this study presents the system dynamics model which can forecast sales of innovative technology considering the feedback effect of market share on technical attributes. For that, the causal loop diagram among the various variables was defined using the econometric model applied and proven in various studies of the Bass diffusion model, discrete choice model, etc. to reinforce the theoretical background of the causal relationship among the variables of the forecasting model. Furthermore, infrastructure building scenarios and feedback effect scenarios were applied to the developed forecasting model to present the implication for successful adoption of green car technology from the infrastructure development view point.

Suggested Citation

  • Lee, Duk Hee & Park, Sang Yong & Kim, Jong Wook & Lee, Seong Kon, 2013. "Analysis on the feedback effect for the diffusion of innovative technologies focusing on the green car," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 498-509.
  • Handle: RePEc:eee:tefoso:v:80:y:2013:i:3:p:498-509
    DOI: 10.1016/j.techfore.2012.08.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162512001916
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2012.08.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    2. repec:cdl:itsdav:qt02n9j6cv is not listed on IDEAS
    3. Gary L. Lilien & Ambar G. Rao & Shlomo Kalish, 1981. "Bayesian Estimation and Control of Detailing Effort in a Repeat Purchase Diffusion Environment," Management Science, INFORMS, vol. 27(5), pages 493-506, May.
    4. Malte Schwoon, 2006. "Simulating the adoption of fuel cell vehicles," Journal of Evolutionary Economics, Springer, vol. 16(4), pages 435-472, October.
    5. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, January.
    6. Jun, Duk B. & Kim, Seon K. & Park, Yoon S. & Park, Myoung H. & Wilson, Amy R., 2002. "Forecasting telecommunication service subscribers in substitutive and competitive environments," International Journal of Forecasting, Elsevier, vol. 18(4), pages 561-581.
    7. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Resource and Energy Economics, Elsevier, vol. 31(3), pages 221-238, August.
    8. Ambar G. Rao & Masataka Yamada, 1988. "Forecasting with a Repeat Purchase Diffusion Model," Management Science, INFORMS, vol. 34(6), pages 734-752, June.
    9. Malte Schwoon, 2005. "Simulating the Adoption of Fuel Cell Vehicles," Working Papers FNU-59, Research unit Sustainability and Global Change, Hamburg University, revised Feb 2006.
    10. Hausman, Jerry A. & Ruud, Paul A., 1987. "Specifying and testing econometric models for rank-ordered data," Journal of Econometrics, Elsevier, vol. 34(1-2), pages 83-104.
    11. Park, Sang Yong & Kim, Jong Wook & Lee, Duk Hee, 2011. "Development of a market penetration forecasting model for Hydrogen Fuel Cell Vehicles considering infrastructure and cost reduction effects," Energy Policy, Elsevier, vol. 39(6), pages 3307-3315, June.
    12. Mau, Paulus & Eyzaguirre, Jimena & Jaccard, Mark & Collins-Dodd, Colleen & Tiedemann, Kenneth, 2008. "The 'neighbor effect': Simulating dynamics in consumer preferences for new vehicle technologies," Ecological Economics, Elsevier, vol. 68(1-2), pages 504-516, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gnann, Till & Stephens, Thomas S. & Lin, Zhenhong & Plötz, Patrick & Liu, Changzheng & Brokate, Jens, 2018. "What drives the market for plug-in electric vehicles? - A review of international PEV market diffusion models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 158-164.
    2. Yongchao Zeng & Peiwu Dong & Yingying Shi & Yang Li, 2018. "On the Disruptive Innovation Strategy of Renewable Energy Technology Diffusion: An Agent-Based Model," Energies, MDPI, vol. 11(11), pages 1-21, November.
    3. Alghoul, M.A. & Hammadi, F.Y. & Amin, Nowshad & Asim, Nilofar, 2018. "The role of existing infrastructure of fuel stations in deploying solar charging systems, electric vehicles and solar energy: A preliminary analysis," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 317-326.
    4. Groesser, Stefan N., 2014. "Co-evolution of legal and voluntary standards: Development of energy efficiency in Swiss residential building codes," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 1-16.
    5. Massiani, Jérôme & Gohs, Andreas, 2015. "The choice of Bass model coefficients to forecast diffusion for innovative products: An empirical investigation for new automotive technologies," Research in Transportation Economics, Elsevier, vol. 50(C), pages 17-28.
    6. Kulmer, Veronika & Seebauer, Sebastian & Hinterreither, Helene & Kortschak, Dominik & Theurl, Michaela C. & Haas, Willi, 2022. "Transforming the s-shape: Identifying and explaining turning points in market diffusion curves of low-carbon technologies in Austria," Research Policy, Elsevier, vol. 51(1).
    7. Ramírez-Correa, Patricio & Grandón, Elizabeth E. & Rondán-Cataluña, F. Javier, 2020. "Users segmentation based on the Technological Readiness Adoption Index in emerging countries: The case of Chile," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    8. Peng, Ruoqing & Tang, Justin Hayse Chiwing G. & Yang, Xiong & Meng, Meng & Zhang, Jie & Zhuge, Chengxiang, 2024. "Investigating the factors influencing the electric vehicle market share: A comparative study of the European Union and United States," Applied Energy, Elsevier, vol. 355(C).
    9. Zhang, Qi & Li, Hailong & Zhu, Lijing & Campana, Pietro Elia & Lu, Huihui & Wallin, Fredrik & Sun, Qie, 2018. "Factors influencing the economics of public charging infrastructures for EV – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 500-509.
    10. Pettifor, H. & Wilson, C. & Axsen, J. & Abrahamse, W. & Anable, J., 2017. "Social influence in the global diffusion of alternative fuel vehicles – A meta-analysis," Journal of Transport Geography, Elsevier, vol. 62(C), pages 247-261.
    11. Kim, Kyungah & Lee, Jongsu & Kim, Junghun, 2021. "Can liquefied petroleum gas vehicles join the fleet of alternative fuel vehicles? Implications of transportation policy based on market forecast and environmental impact," Energy Policy, Elsevier, vol. 154(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wolinetz, Michael & Axsen, Jonn, 2017. "How policy can build the plug-in electric vehicle market: Insights from the REspondent-based Preference And Constraints (REPAC) model," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 238-250.
    2. Araña, Jorge E. & León, Carmelo J., 2013. "Dynamic hypothetical bias in discrete choice experiments: Evidence from measuring the impact of corporate social responsibility on consumers demand," Ecological Economics, Elsevier, vol. 87(C), pages 53-61.
    3. Martin Zsifkovits & Markus Günther, 2015. "Simulating resistances in innovation diffusion over multiple generations: an agent-based approach for fuel-cell vehicles," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(2), pages 501-522, June.
    4. Petschnig, Martin & Heidenreich, Sven & Spieth, Patrick, 2014. "Innovative alternatives take action – Investigating determinants of alternative fuel vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 68-83.
    5. Palmer, J. & Sorda, G. & Madlener, R., 2015. "Modeling the diffusion of residential photovoltaic systems in Italy: An agent-based simulation," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 106-131.
    6. Chul-Yong Lee & Sung-Yoon Huh, 2017. "Technology Forecasting Using a Diffusion Model Incorporating Replacement Purchases," Sustainability, MDPI, vol. 9(6), pages 1-14, June.
    7. Hackbarth, André & Madlener, Reinhard, 2016. "Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.
    8. Chul-Yong Lee & Min-Kyu Lee, 2017. "Demand Forecasting in the Early Stage of the Technology’s Life Cycle Using a Bayesian Update," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    9. Kim, Namwoon & Srivastava, Rajendra K. & Han, Jin K., 2001. "Consumer decision-making in a multi-generational choice set context," Journal of Business Research, Elsevier, vol. 53(3), pages 123-136, September.
    10. Achtnicht, Martin & Bühler, Georg & Hermeling, Claudia, 2008. "Impact of Service Station Networks on Purchase Decisions of Alternative-fuel Vehicles," ZEW Discussion Papers 08-088, ZEW - Leibniz Centre for European Economic Research.
    11. Lee, Hakyeon & Kim, Sang Gook & Park, Hyun-woo & Kang, Pilsung, 2014. "Pre-launch new product demand forecasting using the Bass model: A statistical and machine learning-based approach," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 49-64.
    12. Kwon, Yeongmin & Son, Sanghoon & Jang, Kitae, 2018. "Evaluation of incentive policies for electric vehicles: An experimental study on Jeju Island," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 404-412.
    13. Marc Fischer & Peter Leeflang & Peter Verhoef, 2010. "Drivers of peak sales for pharmaceutical brands," Quantitative Marketing and Economics (QME), Springer, vol. 8(4), pages 429-460, December.
    14. Achtnicht, Martin, 2009. "German car buyers' willingness to pay to reduce CO₂ emissions," ZEW Discussion Papers 09-058, ZEW - Leibniz Centre for European Economic Research.
    15. Mehdizadeh, Milad & Nordfjaern, Trond & Klöckner, Christian A., 2022. "A systematic review of the agent-based modelling/simulation paradigm in mobility transition," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    16. Jongsu Lee & Chul-Yong Lee, 2009. "A Forecasting Model Incorporating Replacement Purchase: Mobile Handsets in South Korea's Market," TEMEP Discussion Papers 200904, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Apr 2009.
    17. André Hackbarth & Reinhard Madlener, 2011. "Consumer Preferences for Alternative Fuel Vehicles: A Discrete Choice Analysis," FCN Working Papers 20/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    18. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
    19. Ruiz-Conde, Enar & Wieringa, Jaap E. & Leeflang, Peter S.H., 2014. "Competitive diffusion of new prescription drugs: The role of pharmaceutical marketing investment," Technological Forecasting and Social Change, Elsevier, vol. 88(C), pages 49-63.
    20. Anders F. Jensen & Elisabetta Cherchi & Stefan L. Mabit & Juan de Dios Ortúzar, 2017. "Predicting the Potential Market for Electric Vehicles," Transportation Science, INFORMS, vol. 51(2), pages 427-440, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:80:y:2013:i:3:p:498-509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.