IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v117y2017icp238-250.html
   My bibliography  Save this article

How policy can build the plug-in electric vehicle market: Insights from the REspondent-based Preference And Constraints (REPAC) model

Author

Listed:
  • Wolinetz, Michael
  • Axsen, Jonn

Abstract

Forecasts for alternative-fuel passenger vehicles sales have varied widely over the past three decades, often proving overly optimistic. In the case of plug-in electric vehicles (PEVs), published forecasts of new market share in North America have ranged from 1% to 28% in 2020, and from 1% to 70% by 2030. To improve understanding of such forecasts, we develop the REspondent-based Preference and Constraint (REPAC) model to simulate PEV new market share by representing key components of PEV demand, PEV supply and relevant policy. Specifically, REPAC uses a latent class discrete choice model previously estimated from data collected via a 2013 survey of 531 new vehicle-buying households in British Columbia, Canada. REPAC treats these choice model results as a measure of unconstrained demand for PEVs, and then adds consumer constraints (PEV awareness and home charging access) as well as supply constraints that represent the limited variety and availability of PEV models. REPAC's baseline (“no-policy”) scenario for annual PEV sales is 1.4% in 2020 and 7% in 2030. With strong demand-focused PEV policies in place (purchase subsidies and charger rollout), 2030 market share ranges from 17% to 28%, while strong supply-focused policy is also required to achieve 2030 market shares over 30% (e.g. a policy that incentivizes or requires automaker to increase the availability and variety of PEV makes and models). REPAC's forecasts are most sensitive to assumptions about PEV home charging access, PEV model availability and variety, consumer familiarity with PEVs, and incremental purchase price.

Suggested Citation

  • Wolinetz, Michael & Axsen, Jonn, 2017. "How policy can build the plug-in electric vehicle market: Insights from the REspondent-based Preference And Constraints (REPAC) model," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 238-250.
  • Handle: RePEc:eee:tefoso:v:117:y:2017:i:c:p:238-250
    DOI: 10.1016/j.techfore.2016.11.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162516307570
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2016.11.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011. "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
    2. Gnann, Till & Plötz, Patrick & Kühn, André & Wietschel, Martin, 2015. "Modelling market diffusion of electric vehicles with real world driving data – German market and policy options," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 95-112.
    3. Axsen, Jonn & Kurani, Kenneth S., 2013. "Hybrid, plug-in hybrid, or electric—What do car buyers want?," Energy Policy, Elsevier, vol. 61(C), pages 532-543.
    4. Greene, William H. & Hensher, David A., 2003. "A latent class model for discrete choice analysis: contrasts with mixed logit," Transportation Research Part B: Methodological, Elsevier, vol. 37(8), pages 681-698, September.
    5. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    6. Kurani, Kenneth & Turrentine, Thomas & Sperling, Daniel, 1996. "Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey," Institute of Transportation Studies, Working Paper Series qt0sb956wq, Institute of Transportation Studies, UC Davis.
    7. Turrentine, Tom & Kurani, Kenneth S, 2007. "Car buyers and fuel economy?," Institute of Transportation Studies, Working Paper Series qt56x845v4, Institute of Transportation Studies, UC Davis.
    8. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    9. Brownstone, David & Bunch, David S. & Train, Kenneth, 2000. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
    10. Figenbaum, Erik & Assum, Terje & Kolbenstvedt, Marika, 2015. "Electromobility in Norway: Experiences and Opportunities," Research in Transportation Economics, Elsevier, vol. 50(C), pages 29-38.
    11. Tanaka, Makoto & Ida, Takanori & Murakami, Kayo & Friedman, Lee, 2014. "Consumers’ willingness to pay for alternative fuel vehicles: A comparative discrete choice analysis between the US and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 194-209.
    12. Jeroen Struben & John D Sterman, 2008. "Transition Challenges for Alternative Fuel Vehicle and Transportation Systems," Environment and Planning B, , vol. 35(6), pages 1070-1097, December.
    13. Bahn, Olivier & Marcy, Mathilde & Vaillancourt, Kathleen & Waaub, Jean-Philippe, 2013. "Electrification of the Canadian road transportation sector: A 2050 outlook with TIMES-Canada," Energy Policy, Elsevier, vol. 62(C), pages 593-606.
    14. Noel Melton & Jonn Axsen & Daniel Sperling, 2016. "Moving beyond alternative fuel hype to decarbonize transportation," Nature Energy, Nature, vol. 1(3), pages 1-10, March.
    15. Choo, Sangho & Mokhtarian, Patricia L., 2004. "What type of vehicle do people drive? The role of attitude and lifestyle in influencing vehicle type choice," University of California Transportation Center, Working Papers qt7vg1057g, University of California Transportation Center.
    16. Bettman, James R & Luce, Mary Frances & Payne, John W, 1998. "Constructive Consumer Choice Processes," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 25(3), pages 187-217, December.
    17. Axsen, Jonn & Kurani, Kenneth S, 2008. "The Early U.S. Market for PHEVs: Anticipating Consumer Awareness, Recharge Potential, Design Priorities and Energy Impacts," Institute of Transportation Studies, Working Paper Series qt4491w7kf, Institute of Transportation Studies, UC Davis.
    18. Lopes, Mafalda Mendes & Moura, Filipe & Martinez, Luis M., 2014. "A rule-based approach for determining the plausible universe of electric vehicle buyers in the Lisbon Metropolitan Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 22-36.
    19. Shafiei, Ehsan & Thorkelsson, Hedinn & Ásgeirsson, Eyjólfur Ingi & Davidsdottir, Brynhildur & Raberto, Marco & Stefansson, Hlynur, 2012. "An agent-based modeling approach to predict the evolution of market share of electric vehicles: A case study from Iceland," Technological Forecasting and Social Change, Elsevier, vol. 79(9), pages 1638-1653.
    20. Eppstein, Margaret J. & Grover, David K. & Marshall, Jeffrey S. & Rizzo, Donna M., 2011. "An agent-based model to study market penetration of plug-in hybrid electric vehicles," Energy Policy, Elsevier, vol. 39(6), pages 3789-3802, June.
    21. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Institute of Transportation Studies, Working Paper Series qt02n9j6cv, Institute of Transportation Studies, UC Davis.
    22. Cahill, Eric & Davies-Shawhyde, Jamie & Turrentine, Thomas S, 2014. "New Car Dealers and Retail Innovation in California’s Plug-In Electric Vehicle Market," Institute of Transportation Studies, Working Paper Series qt9x7255md, Institute of Transportation Studies, UC Davis.
    23. Mau, Paulus & Eyzaguirre, Jimena & Jaccard, Mark & Collins-Dodd, Colleen & Tiedemann, Kenneth, 2008. "The 'neighbor effect': Simulating dynamics in consumer preferences for new vehicle technologies," Ecological Economics, Elsevier, vol. 68(1-2), pages 504-516, December.
    24. Axsen, Jonn & Bailey, Joseph & Castro, Marisol Andrea, 2015. "Preference and lifestyle heterogeneity among potential plug-in electric vehicle buyers," Energy Economics, Elsevier, vol. 50(C), pages 190-201.
    25. Junyi Shen, 2009. "Latent class model or mixed logit model? A comparison by transport mode choice data," Applied Economics, Taylor & Francis Journals, vol. 41(22), pages 2915-2924.
    26. Choo, Sangho & Mokhtarian, Patricia L., 2004. "What type of vehicle do people drive? The role of attitude and lifestyle in influencing vehicle type choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(3), pages 201-222, March.
    27. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    28. Vanessa Oltra & Maïder Saint Jean, 2009. "Sectoral systems of environmental innovation: an application to the French automotive industry," Post-Print hal-00274413, HAL.
    29. Brownston, David & Bunch, David S. & Train, Kenneth, 1999. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," University of California Transportation Center, Working Papers qt7rf7s3nx, University of California Transportation Center.
    30. Turrentine, Thomas S. & Kurani, Kenneth S., 2007. "Car buyers and fuel economy?," Energy Policy, Elsevier, vol. 35(2), pages 1213-1223, February.
    31. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Resource and Energy Economics, Elsevier, vol. 31(3), pages 221-238, August.
    32. Björn Nykvist & Måns Nilsson, 2015. "Rapidly falling costs of battery packs for electric vehicles," Nature Climate Change, Nature, vol. 5(4), pages 329-332, April.
    33. Tran, Martino & Banister, David & Bishop, Justin D.K. & McCulloch, Malcolm D., 2013. "Simulating early adoption of alternative fuel vehicles for sustainability," Technological Forecasting and Social Change, Elsevier, vol. 80(5), pages 865-875.
    34. Heffner, Reid R., 2007. "Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers," Institute of Transportation Studies, Working Paper Series qt9mw1t4w3, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Melton, Noel & Axsen, Jonn & Goldberg, Suzanne, 2017. "Evaluating plug-in electric vehicle policies in the context of long-term greenhouse gas reduction goals: Comparing 10 Canadian provinces using the “PEV policy report card”," Energy Policy, Elsevier, vol. 107(C), pages 381-393.
    2. Axsen, Jonn, 2010. "Interpersonal Influence within Car Buyers’ Social Networks: Observing Consumer Assessment of Plug-in Hybrid Electric Vehicles (PHEVs) and the Spread of Pro-Societal Values," Institute of Transportation Studies, Working Paper Series qt8p32d18k, Institute of Transportation Studies, UC Davis.
    3. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    4. Hackbarth, André & Madlener, Reinhard, 2016. "Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.
    5. Helveston, John Paul & Liu, Yimin & Feit, Elea McDonnell & Fuchs, Erica & Klampfl, Erica & Michalek, Jeremy J., 2015. "Will subsidies drive electric vehicle adoption? Measuring consumer preferences in the U.S. and China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 73(C), pages 96-112.
    6. Sykes, Maxwell & Axsen, Jonn, 2017. "No free ride to zero-emissions: Simulating a region's need to implement its own zero-emissions vehicle (ZEV) mandate to achieve 2050 GHG targets," Energy Policy, Elsevier, vol. 110(C), pages 447-460.
    7. Gabriela D. Oliveira & Luis C. Dias, 2019. "Influence of Demographics on Consumer Preferences for Alternative Fuel Vehicles: A Review of Choice Modelling Studies and a Study in Portugal," Energies, MDPI, vol. 12(2), pages 1-33, January.
    8. Oliveira, Gabriela D. & Roth, Richard & Dias, Luis C., 2019. "Diffusion of alternative fuel vehicles considering dynamic preferences," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 83-99.
    9. Long, Zoe & Kormos, Christine & Sussman, Reuven & Axsen, Jonn, 2021. "MPG, fuel costs, or savings? Exploring the role of information framing in consumer valuation of fuel economy using a choice experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 109-127.
    10. Axsen, Jonn & Bailey, Joseph & Castro, Marisol Andrea, 2015. "Preference and lifestyle heterogeneity among potential plug-in electric vehicle buyers," Energy Economics, Elsevier, vol. 50(C), pages 190-201.
    11. Axsen, Jonn & Kurani, Kenneth S., 2013. "Hybrid, plug-in hybrid, or electric—What do car buyers want?," Energy Policy, Elsevier, vol. 61(C), pages 532-543.
    12. Larson, Paul D. & Viáfara, Jairo & Parsons, Robert V. & Elias, Arne, 2014. "Consumer attitudes about electric cars: Pricing analysis and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 299-314.
    13. Gnann, Till & Plötz, Patrick & Kühn, André & Wietschel, Martin, 2015. "Modelling market diffusion of electric vehicles with real world driving data – German market and policy options," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 95-112.
    14. Wee, Sherilyn & Coffman, Makena & Allen, Scott, 2020. "EV driver characteristics: Evidence from Hawaii," Transport Policy, Elsevier, vol. 87(C), pages 33-40.
    15. von Rosenstiel, Dirk Peters & Heuermann, Daniel F. & Hüsig, Stefan, 2015. "Why has the introduction of natural gas vehicles failed in Germany?—Lessons on the role of market failure in markets for alternative fuel vehicles," Energy Policy, Elsevier, vol. 78(C), pages 91-101.
    16. Bansal, Prateek & Kumar, Rajeev Ranjan & Raj, Alok & Dubey, Subodh & Graham, Daniel J., 2021. "Willingness to pay and attitudinal preferences of Indian consumers for electric vehicles," Energy Economics, Elsevier, vol. 100(C).
    17. Achtnicht, Martin & Bühler, Georg & Hermeling, Claudia, 2008. "Impact of Service Station Networks on Purchase Decisions of Alternative-fuel Vehicles," ZEW Discussion Papers 08-088, ZEW - Leibniz Centre for European Economic Research.
    18. Tanaka, Makoto & Ida, Takanori & Murakami, Kayo & Friedman, Lee, 2014. "Consumers’ willingness to pay for alternative fuel vehicles: A comparative discrete choice analysis between the US and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 194-209.
    19. Dimitropoulos, Alexandros & Rietveld, Piet & van Ommeren, Jos N., 2013. "Consumer valuation of changes in driving range: A meta-analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 55(C), pages 27-45.
    20. Yang, J. & Chen, F., 2021. "How are social-psychological factors related to consumer preferences for plug-in electric vehicles? Case studies from two cities in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:117:y:2017:i:c:p:238-250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.